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Abstract

Ranking and selection procedures are statistical methods used to compare and

choose the best among a group of similar statistically distributed populations. The

two predominant approaches to solving ranking and selection problems are Gupta's

subset selection formulation and Bechhofer's indifference-zone formulation. For the

indifference-zone formulation where the populations have equal sample sizes, Barr

and Rizvi developed an integral expression of the probability of correct selection

(PCS). Given appropriate parameters, the integral expression can be solved to de-

termine the common sample size required to attain a desired PCS.

Tables with selected solutions to the integral expression are available for a vari-

ety of population distributions. These tables, however, are not included in any single

reference, sometimes require interpolation, and only provide approximate results for

the case of unequal sample sizes. Using a computer software program to solve the

integral expression for the unknown parameters can eliminate these burdens.

This paper describes the computer software developed to solve the integral

expression of the indifference-zone formulation for normally distributed populations

having either equal or unequal sample sizes. The software was written in Quick-

BASIC and Mathematica. The QuickBASIC code is a menu-driven interface that

develops input files for Mathematica. Mathematica is the mathematical software

package which performs the computationally intensive calculations required to solve

the integral expressions. Although limited to comparisons of normal populations,

the program can be easily modified to accommodate other distributions. It is hoped

that other ranking and selection problems will eventually apply this easy-to-use inter-

face, making the ranking and selection procedure a more common tool in statistical

decision making.

xi



SOLVING THE RANKING AND SELECTION

INDIFFERENCE-ZONE FORMULATION FOR NORMAL

DISTRIBUTIONS

USING COMPUTER SOFTWARE

I. Introduction

Occasionally decision makers must select the best of several alternatives. Many

decisions have a high impact on society, such as testing for the most effective drugs,

choosing the best location for a manufacturing plant, or predicting the winning

candidate in a political campaign. The United States Air Force daily makes decisions

which impact the defense of the country. These decisions could include choosing a

type of aircraft to send on a particular mission, selecting the most effective space-

based weapon, or selecting the most reliable or survivable components for the design

of a satellite. In all cases, the goal is to select one or more of the k items being

considered, based on some factor (usually quantitative) bearing on the decision.

These type of problems are classified as ranking and selection problems.

Ranking and selection procedures are statistical methods used to compare and

choose the best among a group of similar statistically distributed populations. Barr

and Rizvi developed an integral expression that defines the probability of a correct

selection (PCS) for the case of populations having equal sample sizes [1:640-646].

Given the number of populations to compare, the number of populations to select,

the distribution and parameters of the populations, ant. the desired PCS; an ex-

perimenter can apply the integral expression to solve for the common number of

sample observations, n, from each population, that guarantees the stipulated PCS.

The experiment is then conducted, collecting n observations from each population.
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In many experimental situations, factors such as high costs, risk, scarce resources,

or experimental error may result in samples of unequal size. In such an event, the

experimenter may be interested in the effect that unequal sample sizes have on the

PCS. Barr and Rizvi's integral expression for equal samples does not apply; however,

its development is the basis for an unequal sample size formulation.

Since the governing integral expression may be too complicated to solve by

hand, published tables provide various combinations of the common sample size, n,

and the PCS for a variety of distributions. However, using these tables presents

three problems:

"* the tables are not included in any single, readily available reference,

"* interpolation might be required to determine the appropriate sample size or

PCS value, and

"* the tables do not provide results for the unequal sample size case.

Prior to this research, a computer program which directly and conveniently solves

the appropriate integral expression for the desired variable (e.g. n or PCS) had not

been developed.

1.1 Research Objective

The purpose of this thesis is to develop a computer program to offeý an alter-

native to the published ranking and selection tables for the normal distribution.

1.2 Scope

Only single-stage procedures are investigated since all cases presented in this

thesis effort involve populations having a common and known variance. In a single-

stage procedure, one batch of observations is taken as a representative from each

population. For populations with unknown variances, at least one stage is used to

estimate the variance; the final stage identifies those populations selected as best.
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1.3 Thesis Overview

The thesis consists of five chapters. Chapter 2 defines the terminology of the

ranking and selection problem and derives the integral expressions for both equal

and unequal sample-sized populations. It also applies the resulting expressions to

the normal distribution, presents a numerical example, and provides a short summary

of specific ranking and selection problems.

Chapter 3 describes the mathematical software and the computer tools chosen

to solve the integral expression. The chapter also explains in detail the menu-driven

program developed as an interface to the mathematical software package.

Chapter 4 presents a numerical analysis of the values obtained from the math-

ematical software for normally distributed populations with unequal sample sizes.

Based on the analysis, several conjectures are made and a few approaches at proving

these conjectures are attempted.

Finally, conclusions are summarized, improvements are recommended and fu-

ture research options are discussed in Chapter 5.
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I. Background

Nearly all procedures used to solve ranking and selection problems are based

on either (1) the indifference-zone formulation or (2) the subset-selection formulation

[4:296-301]. Although developed in the 1950's, these formulations still provide the

basis for current research in ranking and selection procedures. This thesis focuses

on the indifference-zone formulation for normally distributed populations.

After some statistical terms are defined, the general indifference-zone integral

expression is developed. This integral expression is applied to normally distributed

populations with a common, known variance for the cases of equal and unequal sam-

ple sizes. The resulting equations are the theoretical foundation for the computer

software program developed in Chapter 3. To illustrate their use, a numerical ex-

ample of the equal sample size case is provided. Finally, a few ranking and selection

problems and their associated procedures are discussed to provide a broader context

for this research.

2.1 Definition of Terms

The derivation of the indifference-zone integral expression requires the use of

several terms, which are defined below.

Population - a large group of data which follows some statistically distributed

form [6:2]. Populations are compared in the ranking and selection problem. In this

thesis, all populations compared will have the same distributional form. This avoids

further complication of the ranking and selection problem. Let k denote the number

of populations.

Sample - a subset of a population [6:2]. For populations with equal sample

sizes, a sample of size n is considered from each population. For samples of unequal

size, the k populations have samples of size ni (i = 1,..., k).
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Parameters - numerical descriptive measures of the population [6:861. Sufficient

statistics are statistics which provide the minimum information needed to describe

the population distribution.

Parameter Space - a set consisting of each population's descriptive measure(s)

of interest. For instance, if we compare three populations and wish to select the

population with the largest mean, then the parameter space will include the mean

for each population.

Test Statistic - a function of the sample measurements which acts as an esti-

mate of a population parameter (e.g. sample mean, sample variance) [6:429].

Ranking and Selection Procedure - an algorithm that orders the populations

according to their "bestness". "Bestness" is determined by the experimental goal

and could be the smallest or largest parameter value, the most or least successful

population, etc. [4:2]. Ranking and selection procedures are generally classified as:

"* Single-Stage - One batch of samples from each population is collected to de-

termine the necessary population information to rank the populations.

"* Multi-Stage - A common sample from each population is taken in a first stage

to determine an average estimate of the population variance. Other stages

provi"-: rmore samples and better estimates. A final stage uses this estimate to

identify those populations selected as best [4:92-95].

" Sequential - After tvery single sample observation from each observation, the

procedure evaluates an estimate of the population variance. The procedure

ends according to a predetermined stopping rule that is determined by the

experimenter. A selection is made based or the ranking of populations at this

stopping point [4:61-87,99,-95].
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Bst selection - based on the rankings, the population or subset of populations

with the best ranking parameter(s). Let t be the number of populations to be selected

as best.

Probability of Correct Selection (PCS) - the likelihood that the population or

set of populations selected is best [4:13- 141.

Indifference Zone (IZ) - a region of the parameter space that defines an insignif-

icant difference between two or more parameters. The experimenter is indifferent

between selections whose parameters fall in this zone. [4:5].

Preference Zone (PF) - the complement of the IZ. The region of the parameter

space that has a significant difference between two or more parameters. The ex-

perimenter has a preference for making a correct selection between selections whose

parameters fall in this region. [4:5,9-10].

Indifference Parameter (or Practical Difference, 6) - the significant distance mea-

sure between parameters which is generally expressed as a difference or a ratio. De-

fines the minimum distance required in the PZ, and provides outer bounds for the IZ.

The indifference parameter is a numerical value determined prior to experimentation

since its value depends on the experimental goal.

Subscript Notation - The ranking and selection literature employs different

subscript notations with subtle differences that can mislead the uninitiated. These

subscripts can apply to a random variable (e.g. Y or X), a parameter (e.g. 0), a

sample size (e.g. n), or a distribution (e.g. Fy).

* bracketed subscripts (e.g. [i], [j], [a], [b]) - indicate order. For instance, popu-

lation parameters are ordered as 0 [11 < 0[21 < ... <OJ.
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* parenthesized subscripts (e.g. (i), (j), (a), (b)) - indicate association with a spe-

cific ordered parameter (Y(•) is a random variable associated with the popula-

tion having an ordered parameter ONj).

* unbracketed subscripts (e.g. i, j) - indicate neither order nor association with

any specific ordered parameter.

2.2 Indifference-Zone Formulation (Integral Development)

The indifference-zone formulation results in an integral expression of the PCS

for a single-stage ranking and selection procedure. Development of the integral

expression relies heavily on the following definition and theorem presented by Barr

and Rizvi [1:642]:

Definition: A cumulative distribution function (CDF) F(y; 0) with a real pa-

rameter 0 is said to be stochastically increasing in case,

0 < 0' = F(y; 0') <_ F(y; 0) for all y (2.1)

where 0 is the parameter and F(y; 9) the CDF of one population, and 0' and F(y; 9')

are the parameter and CDF of a second population [1:640]. This definition is used

in the following theorem:

Theorem: Let Y 1,..., Yk be k independently distributed random variables with

continuous stochastically increasing CDF's, F(yi; Oi),i = 1,...,k. Let 0[j] _• 0[2] <

... < O[m denote the ordered values of the 0, and let Y(,) denote the random variable

with parameter 0[q. Then, for t < k,

P = Pr[max(Y(l),..., Y/(-t)) < min(Y(k-t+l),..., Y(k))] (2.2)
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is a non increasing function of [iJ,. . , 0[k-t] and a nondecreasing function of

9 fk-t+lj, • •- , 01k].

The probability, P, is the basis for obtaining the PCS and can be expressed in

two forms [1:640]. Although these forms are developed using separate approaches,

they share a common notation. For the k populations introduced in the preced-

ing theorem, let the t (1 < t < k) best populations constitute the set S2

{]•-W~), ... , Y(k)}. The remaining t - k populations are included in the set S1

{Y(i),..., Y(k-)}.

Approach 1: Let Y(i), i = 1,...,k-t, be a random variable which is in S1 . Con-

sidering each possible case in which Y(,) is the maximum observed response among

the populations in S1, the probability in Equation (2.2) can be rewritten as

k-t

P = Pr(U {[fmax(Y(l),. Y(k-t)) = Y(,)] n [Y(j) < min(Y(k.t+1),. .. , Y(k))]}). (2.3)
i=1

The intersection sign indicates that both the equality and inequality expressions must

hold to satisfy Equation (2.2). The union of events ranging over i = 1 to k-t accounts

for all possible populations in S1 that could yield the maximum observed response.

Note further that each probability, conditioned on Y(4 , is mutually exclusive. Since

n n

P(U E,) = E P(Ej) (2.4)
i=1 i=1

for any set of mutually exclusive events El, E2 ,... [7:30], Equation (3) can then be

rewritten as

k-t

P = • Pr{[max(Y(I),... , Y(k-t)) = Y(i)] n [Y(j) < min(Y(kt+l),... Y(k))]}. (2.5)
i=1
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Conditioning on Y(•) = y,

P = Ek-Yf2 Pr([maz(Y(j),.. . k = nj)] n

[Y() < miin(Y(k.t+l),...,Y(k>)]} I Y(i) y)fy(,)(y)dy (2.6)

where f(,)(y) is the probability density function (PDF) of the random variable Y(j)

[6:290]. Since each population defined in set S is sampled independently of the

populations defined in S2 , Equation (2.6) can be expressed as the product below:

P = fo Pr[max(Y(j),...,Y(4_t) = Y]"

Pr[y < min(Y(kt+l),... , Y(k))]fyc)(y)dy (2.7)

Simplifying the first probability expression in Equation (2.7) as the product of the

CDF's of the Y• (1 < i < k - t) results in

Pr[max(Yo),. . . , Y(k-t)) = Y] = P(Yo) <- Y)P(Y(2) <Y) ... P(Y(k-) <- Y)
k-t

][I Flb). (2.8)

b~i

Since we have defined Y(1) as part of S1, and we conditioned on Y(j) = y, we have

already included Y(•) in the probability product (e.g. conditionally, P(Y(•) = y) = 1).

Therefore, in the final expression, the ith factor is not explicitly included. The second

probability inside the integral expression in Equation (2.7) is similarly expressed as

Pr[y < min(Y~k-t+l),... , Y(k))] = P(Y(k.-t+l) > Y)P(Y(k-t+2) > Y)... P(Y(k) > Y)
k

- li [1 - Fy.)(y)]. (2.9)
a=k-t+1
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Substituting the form of the probabilities given in Equations (2.8) and (2.9), Equa-

tion (2.7) can be expressed as

k-t ,o k-t k

P = ']__ fI Fy)(y) fl [1- FY(.)(y)]fy(,)(y)dy. (2.10)
o= 61 a=k-t+l

Equation (2.10) represents the most general form of the indifference-zone integral

equation. It applies to cases of both equal and unequal population sample sizes. If

all population sample sizes are equal, then Equation (2.10) can be rewritten as

k-i , k-t ii

e- = F(y; O1b]) Hi [1 - F(y; 0[.j)]dF(y; O[,i) (2.11)
'=1 -- O° 61 a=k-t+l

b~Ii

as a reminder that the functions involved are only dependent on y and the ordered

parameters 0.

Suppose we take the limit of P as all the parameter values associated with the

populations in S1 approach the largest parameter value associated with S1 . Let this

largest parameter be 0 which is defined as the upper limit to the preference zone.

Similarly, let all the parameter values associated with the populations in S2 approach

the smallest parameter value associated with S2. Let this smallest parameter be a

function of 0, say 0t(0), defined as the lower limit to the preference zone. Let Q be

the limit of P. We can express Q as

Q = lim P (2.12)

or,

k-t 1-t

Q lia I _ '- F(y;OO[b) [1 - F(y;6[.])]dF(y;O[ij) (2.13)

ot 1 100 b= a=k-t+l
b:Ai

which results in
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k-ti .0k-t k

Q= fi -IF(y;O) .]a [1- F(y;0(0))ldF(y;O). (2.14)

This manipulation expresses Q as a function of only one parameter, namely 0. Since

there is no longer an order associated with the (k - t - 1) CDF's, as expressed by

F(y; 0), the product of the CDF's can be replaced by the limitiug CDF raised to

the appropriate power. The product of the limiting complementary CDF's, (1 -

F(y; v(O))), can be expressed in a similar fashion. Using these exponential forms

results in

k-t -,

Q= E _ F'-k'(y;O)[1 - F(y;k(0))I'dF(y;O). (2.15)

As the terms in the sum are free of the index of summation i, Equation (2.15) can

also be represented as

Q = (k - t) Fk-t-l(y; 0)[1 - F(y; tk(0))I tdF(y; 9)- (2.16)
f CI

Equation (2.16) is one of the equations developed in the Barr and Rizvi paper and

specifically applies to the case where populations have equal sample sizes. [1:6421.

Approach 2: There is a second equivalent way of representing the PCS for the

case of equal sample sizes. Since its derivation is similar to the one just completed,

some interim steps are omitted.

Reconsider the probability given in Equation (2.2), and define Y(j) as a random

variable that is in S2. We know that to correctly select the best t populations, Y(j)

must be larger than the maximum of the set S1. The PCS can be rewritten as

P = Pr(U=+{ [min(y•k-t+,),... , Y(k)) = Ylj)] n

[Y(j) > max(Y(,), ... ,Y(k•t))]}). (2.17)
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Using the same mutually exclusive, conditioning, and independence arguments and

making substitutions similar to those in the first approach, Equation (2.17) becomes

k k-t k

P = n J [J Fyr() Iy [1 - Fy(°)(y)]fy(,)(y)dy. (2.18)
=' -- •k-t =

If sample sizes are equal, Equation (2.18) can be rewritten as

k 00k-t k

P = E J F(y; ibl) fi [1 - F(y;eO[.)]dF(y;GOiJ), (2.19)
,=k-t+l -' b=1 aSk-C+1

which is a function of y and the ordered parameters 0[,+, where 1 < i < k. Taking

the limit of P as Oebj --+ 0 and 01.1 --4 0(0), Equation (2.19) becomes

k k-t k

Q== E J_ i F(y;0) H [1- F(y;0(0))JdF(y;0?(0)). (2.20)
j=k-"l -t- °= a --t+1

aj

Similar to approach 1, the product symbols are replaced by corresponding powers to

achieve a final expression of

Q f Fk-(y; =)[i - F(y; 0(0))I t- 1dF(y; 0(0)). (2.21)

Equation (2.21) is the second equivalent integral expression given in the Barr and

Rizvi paper and applies to cases of equal sample size populations [1:642].

Both integral expressions (Equations (2.16) and (2.21)) provide the PCS when

e comparing k populations having the same distributional form,

e selecting t populations among them, and

o knowing the indifference parameter (in either the form of 0(0)-0, or 0(0)/0).
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Typically, an experimenter is interested in the necessary sample size from each pop-

ulation that will guarantee a prescribed PCS. Although it is not apparent from the

final expressions, the CDF (the function F) and the derivative of the CDF (the

PDF or the function dF) are functions of the common sample size, n. A specific

application of Equation (2.21) can best demonstrate this dependence on n.

2.3 Normal Distribution Formulation: Common Known Variance and Equal Sam-

ple Size

In this section, Equation (2.21) is used to derive the PCS expression for nor-

mally distributed populations of equal sample size and a common, known variance.

The resulting equation can then be simplified and implemented into a computer

software program which handles the computationally intensive calculation.

For normally distributed populations with a common known variance, the

CDF's displayed in Equation (2.21) are readily developed, as shown in Equations

(2.22) - (2.24).

F(y; 0) = $[(y - 0)%/'n/aj (2.22)

F(y; 0b(0)) = 0[(y - 0k(0))V¶/'o•] (2.23)

dF(y; 0b(0)) = (iVr•/or)so[(y - ib(0))V'a•/t1dy (2.24)

where 0 is the CDF and W is the pdf of the normal distribution (unit 0). For a

common sample size, n, the above equations are substituted into Eqdation (2.21)

becoming
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Q= tfo *k- t [( ' - [-

(Vi/a)w[(y - ,(0)),rnl/]dy. (2.25)

To further simplify the above equation, let

u = t[(y - ,(O))V/'i/o"] (2.26)

so that

du = (v'n/or)w[(y - 0(0))vi/ao]dy (2.27)

and

S= O -'(u )oy/ 1 n/ + 0 (0). (•.28)

Substituting these expressions into Equation (2.25) and transforming the limits of

integration,

Q = t j ,-'[(0-l(u)oI/vi + ,0(0) - e)(vW/,,)](1 - u) t-'du. (2.29)

If we define the indifference parameter, 6, as

b = ,0,(0) - , (2.30)

the expression is further simplified to

Q = t f/ Ok-1[O-1(u) + vr61•/](1 - u)-'du. (2.31)
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Equation (2.31) is typically used to solve for the PCS, represented as Q, given values

for k, t, n, a, and 6.

2.4 Normal Distribution Formulation: Common Known Variance, Unequal Sample

Sizes

The indifference-zone integral expressions previously developed are now ex-

tended for the case of unequal sample size populations and similarly simplified for

computer implementation. Either Equations (2.10) or (2.18) can act as the starting

point for this development. To be consistent with the equal sample size formulation

for the normal distribution, we begin with Equation (2.18). Equation (2.18) repre-

sents the most general case where the goal is to select the best t of k populations.

It is repeated here for convenience:

k k-t k

P = E f Fy(.b)(y) 1 [1 - Fy(.)(y)]fy(,)(y)dy. (2.32).
j. kt7 -0 = ask--t÷la~i

Since it is assumed that each population has a unique sample size, the CDF's are

not the same. The following substitutions are made into the above equation:

FY(b)(y) = 0[(Y - Otb])iVni/10], (2.33)

Fyo)(y) = $[(y - O[8]) /h'•)/u], (2.34)

Fyc,(y) = 0[(y - Ol)Vniffii/], (2.35)

and

f•,,(y) = (ViTh-j•/a)W[(y - Objj)ViT4ij/udy. (2.36)
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Equation (2.32) then becomes

k ook-tP= F _l #[(y - 9bl)V¢ /o1.

j--k-t+1 -00b=

k

[I [1 -,O[(y - - OEI)Vfjj)I/oidy. (2.37)
-h-t9+1
G,&i

A change of variables from y to u is made, with the following definitions:

u= =,[(y - t(O•)) ii•/•l, (2.38)

du = (V n--i/)Ioo[(y - O(O%1))Vn4 )/1j]dy, (2.39)

and

y = O-'(u)or/, n-i' + •b(e[1). (2.40)

Making these substitutions, Equation (2.37) becomes

k 1 -

P= IE+ f -j -[/'~ (u) + (O%1 - 6[bJ)s/ii(bj/Ohj=k-t+l b=1

kfI [I - V[n()/n(i)O-'(u) + (O9 L - O[.]) n/--i.)/oT]ldu. (2.41)

aGk-t+1
a$i

If we let the first k-t ordered parameters approach 0, and the last t parameters

approach 0(0), the limit of P is given as

Q lim P

Ok-_1+ 1], ...3 k]
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S rlim P, (2.42)
0(6,•1-0/(°

which simplifies Equation (2.41) to

k 
1 k-tQ = 'I J 0[Vn(b)/n(j)$-'(u) + (0(0) - O)VR'h•/o]

j=k-t+l 0b=1

k

1- [1 - 1[,!1/t/(j)$-(u) + (b(0) - &(e))V,•i/uJldu. (2.43)
awk-t+1Ga&j

Substituting the indifference parameter, defined as

b= 0(0) -0, (2.44)

into Equation (2.43) yields

k-t
Q = k•=_,c+i fo 1 $[J 7)/n)O-71(u) + bv/ii(/U]"

k
Il [1 - • n[/(.)/-(7jy-n(u)]]du. (2.45)

a~k--t+1

a#3j

Equation (2.45) expresses a form which can be implemented in a computer software

program.

In some situations, the experimenter may either not have control over the

number of samples provided by each population (due to missing data) or might

prefer unequal sample sizes (due to limited resources). Given the observed unequal

sample sizes, Equation (2.45) can solve for either PCS or b. To analyze the effects

of unequal sample sizes for normally distributed populations, it helps to further

simplify Equation (2.45) into expressions for special cases. For instance, a common

goal is to select the one best population among k populations. For this case, t=l is

substituted into Equation (2.45) to become
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Q = _-f Io '[ /[&" (j)" '(") + 6,Wýj -/T.
b=1

k
fI[i - @[V/7(.)fl.(j)-1(u)lldu, (2.46)

Gill

which simplifies to

Q Jo O[Vn-(b)l-(k)*-'(-) + pVr l-ld.. (2.47)
bill

A specific case of Equation (2.47) is select...g the one best population from a

total of two populations. Substituting k=2 into Equation (2.47),

Q = j1 I' $[/n_(b)/n;(2)b-1(u) + bn/ij/o]du (2.48)

b=1

which results in

Q = J [@[, nI)/n(2)s-1(u) + b,,i•j/uJdu. (2.49)

Equations (2.47) and (2.49) provide formulae that are easier to implement for

computer calculation.

2.5 A Numerical Example

A greatly simplified example illustrates the use of the indifference-zone formu-

lae in sob, *g a specific ranking and selection problem.

Consider a satellite system, in early design development, that will have an

anti-satellite (ASAT) mission. The satellite system's payload will consist of a kinetic

energy weapon whose effectiveness is measured by its ability to hit the geometric

center of its target. Suppose that there are three competing contract bids for the

mission payload and only one will be selected based on its effectiveness. Suppose
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further that the kinetic energy weapon accuracy can only be estimated through

computer simulation.

An expert is asked to simulate the effectiveness of each weapon system and

recommend the most effective one for continued development. It is known from

historical simulation runs that the accuracy data (measured in a radial error dis-

tance from the target) for each of the proposed weapon systems follows a normal

distribution.

The expert and the development agency agree on an experimental objective

of correctly selecting the best weapon (least error distance) with at least 95 percent

confidence. A practical difference of b =.004 kilometers and a standard deviation

a =.O1 (common to all proposed weapons) should be considered. Substituting the

values for b, or, and the desired PCS into Equation (2.31),

Q -. 95 = (1) 02[0-1(U) + (VJ/.O1)(.OO4)IdU.

Bechhofer's solutions to a similar expression for different values of n, a, b, and PCS

are documented in a published table [3:30-37]. A small portion of one of his table is

reproduced as Table 2.1.

Bechhofer's table expresses values corresponding to V•I6/u for a given t, k, and

desired PCS and is referenced to throughout this thesis. For this example, a PCS of

.95 and a k=3 and t=1 corresponds to a value of 2.7101. The common sample size

required to attain the desired PCS as shown below

2.7101 = V'•n/ = v¶G(.004)/(.01),

where

n = 45.904.
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Therefore, the number of observations needed to choose the best mission package

with at least 95 percent confidence is 46.

Table 2.1 Partial Bechhofer Table Corresponding to Various PCS Values, To Be
Used for Designing Experiments Involving k Normal Populations to De-
cide which t have the Largest (or Smallest) Population Means.

PCS k=2 k=3 k=4 k=4 k=5
t=1 t=1 t=1 t=2 t=1

.99 3.29 3.1673 3.7970 3.9323 3.9196

.98 2.9045 3.2533 3.4432 3.5893 3.5722

.97 2.6598 3.0232 3.2198 3.3734 3.3529

.96 1 2.4759 2.8504 3.0522 3.2117 3.1885

.95 2.3262 2.7101 2.9162 3.0808 3.0552

2.6 Selected Indifference-Zone Ranking and Selection Problems

Bechhofer [3:16-391 and Barr and Rizvi [1:640-646] provided the theoretical

foundation for single-stage indifference-zone ranking and selection procedures. Nu-

merous procedures have been developed for problems involving various distribu-

tions, including the uniform [2:15-31], binomial [4:103-122], multinomial [4:158-178],

gamma [4:328-339], and normal [3:16-39] distributions. This research focuses on the

indifference-zone development for two specific problems, namely normally distributed

populations with common, known variance and either (1) equal or (2) unequal sample

sizes.

For normal populations with a common, known variance and equal sample

sizes, Barr and Rizvi's indifference-zone integral expression applies and Bechhofer's

table can be used. However, for populations of unequal sample sizes, tables are not

available to help solve the selection problem. To rectify this deficiency, Gibbons,

Olkin, and Sobel suggest a generalized average sample size,

,no + [( + + .._. + 2 (2.50)
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computed using the square-mean-root formula [4:50-1]. Substituting no in the equal

sample size expressions or Bechhofer's table approximates the desired parameter (e.g.

PCS, 6). When population variances are not known, single-stage procedures do not

apply. For any case of unknown or uncommon variances, exact solutions require

multi-stage or sequential procedures [4:61-87,92-95].

The indifference-zone formulation integral expression developed by Barr and

Rizvi is applicable to many statistical ranking and selection problems. Here, we have

specifically applied it to problems involving normally distributed populations with

a common, known variance. The formulae developed in this chapter for normally

distributed populations with equal and unequal sample sizes are the basis for the

interactive computer software program presented in the following chapter.
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III. Computer Software for Specific

Ranking and Selection Problems

Ranking and selection problems involve the selection of one or more alterna-

tives from a group of many. Information about this selection (e.g., the necessary

PCS, the number of observations) can be obtained by solving the indifference-zone

integral expressions developed in Chapter 2. This chapter presents a computer soft-

ware package that solves these integral expressions for any variable of the ranking

and selection problem. The software is intended to provide an easily accessible,

computationally efficient, and accurate method to solve the integral expression for a

variety of experimental situations.

A computer software program that solves these integral expressions was created

using two software packages:

"* Mathematica, a commercial mathematical software package used to perform

the complex integrations, and

"* QuickBASIC, a BASIC dialect, employed to create a menu-driven shell to the

Mathematica software program.

This chapter briefly describes these commercial software packages and explains

how they were applied to the ranking and selection problem. The final section of this

chapter presents the QuickBASIC menu choices and explains the options provided

to the user.

3.1 Mathematica

Mathematica is a general software system that evaluates mathematical expres-

sions and creates graphical output. This software was chosen to solve the indifference-

zone formulation equation for three reasons:

• it is very easy to work with,
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e it is capable of handling a wide variety of complex functions, and

* it can be invoked without understanding the Mathematica language itself.

Mathematica Version 2 is available on several operating systems. These in-

clude the VMS, UNIX, MS-DOS, Microsoft Windows, NeXT, and Apple operating

systems [8]. A Mathematica version may be accessed from either a text-based (UNIX)

or notebook (PC) interface [8:44-46]. The operating procedures for implementing the

ranking and selection software will differ depending on the operating system. Expla-

nations throughout this chapter concentrate on the UNIX version as implemented

on a SUN 4/75c microcomputer workstation.

Appendix B includes directions for operating the ranking and selection software

using the UNIX operating system.

The Mathematica language consists of command statements that are either en-

tered after receiving the the Mathematica prompt or read from a text file. Through-

out this chapter, Mathematica statements are featured in bold. To access the Math-

ematica on a UNIX operating system, the command math is typed at the UNIX

prompt. The screen input prompt

In[l]:=

indicates that the Mathematica system is ready to receive the first command state-

ment. Subsequent inputs are preceded by similar, consecutively numbered prompts.

When Mathematica reads from a text file, each line in the file acts as a Mathematica

input statement.

Mathematica contains several unique features that make it ideal for computing

the integral expression and interacting with other programming languages. These

features include a statistics package, a numerical integration function, a root finding

function, and a capability of importing files from outside the Mathematica system.

The functions that describe these features are briefly discussed.
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Statistics Package: This is one of the strongest capabilities that Mathernatica

contributes to the indifference-zone integral computation. The statistics package

evaluates some common statistical distribution functions, including the cumulative

distribution function, the probability density function, and the quantile function

(finding the complimentary CDF) for both discrete and continuous distributions

[8:111,585-5901.

The statistics package is invoked by the Mathematica command

<< Statistics'ContinuousDistributions'

for continuous distributions, or by

<< Statistics'DiscreteDistributions'

for discrete distributions. Mathernatica allows easy access to most common contin-

uous distributions, including the normal, gamma, exponential, and uniform. For

example, a function defining a cumulative normal distribution with a zero mean and

a standard deviation of one can be expressed as

F[t -]: = CDF[NormalDistribution[O,1],t3.

For any given t value, F[t_] can be numerically evaluated. The probability density

function can be similarly defined as

f[t..J :=PDF[NormalDistribution[0,11,t],

and the quantile as

G [t_] :=Quantile[NormalDistribution[O, 11,t].

The ranking and selection computer software program uses all three of these com-

mand statements to evaluate the integral expression.

Numerical Integration: The Mathematica Nintegrate command numerically in-

tegrates a defined function. A function equivalent to 2x can be defined as
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Fix -.: = 2*x.

The integration of 2x from zero to one with respect to x is invoked by

Nlntegrate[F[x], {x,0,1 1].

This Mathematica command is used to evaluate the indifference-zone integral for the

PCs.

Finding the Root of a Complicated Function: The command Find Root searches

for an approximate solution to a given equation. Let Q[n,t,k] define the indifference-

zone integral and let pr be the desired PCS. Given the number of populations, k, the

number of populations to be selected, t, and the desired PCS, a numerical approxi-

mation for n can be evaluated using the Mathematica statement

FindRoot[Q[n,tk]==pr, {n,fst,sec}],

where fst and sec are numerical parameters. Mathematica first initiates a search in

the neighborhood of fst. If a root cannot be found around fst, it will conduct a

second search with the alternate parameter, sec.

Ability to Import and Export Text Files: Mathematica allows the user to cre-

ate text files outside of Mathematica for import into the Mathematica system. Once

inside the system, the correct command to retrieve a file is

<<ifilename.

where ifilename is the name assigned to the input file by the user. Mathematica

responds to each line of the file as an input statement.

If desired, Mathematica responses may be exported to an output file with the

use of the Mathematica command
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>>ofilename,

where ofilename is the name of the output file as assigned by the user. The output file

will contain all of the input statements and Mathematica results. It can be viewed,

edited, or printed once outside of the Mathematica system.

The creation of both an input and an output file avoids direct interaction with

Mathematica. The following UNIX command, typed at a UNIX prompt, requests

Mathematica to perform the commands contained in the input file and save the

corresponding responses in a separate output file;

math <ifilename>ofilename

A UNIX prompt signifies the computation is complete and the output file is ready

to view. If such an input file has been created for a specific computation, a user

can enter this single-line UNIX statement without knowing how to create the file

or to program in the Mathematica language. Specifically, Mathematica can execute

the computations necessary for the indifference-zone integral calculation without a

direct user-Mathematica interface.

A menu-driven software program can make Mathematica calculations trans-

parent and provide the user with multiple options for solving a variety of ranking

and selection problems. QuickBASIC is the language that was chosen to create this

menu-driven shell.

3.2 QuickBASIC

QuickBASIC is a dialect of the BASIC language. It offers a user-friendly envi-

ronment that contains an easy-to-use menu structure, a syntax-checking editor and

compiler, 1 and 1 editing capabilities, and full debugging resources. A QuickBA-

SIC program can execute a single line at a time, with the system identifying and

reporting errors as the code is being entered [5:11.
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In addition, QuickBASIC is easily accessible. Microsoft QuickBASIC is usually

provided as an application to Microsoft Windows. Most computers that have DOS

5.0 also include an interactive version of the QuickBASIC programming language,

referred to as QBASIC.

3.3 QuickBASIC Ranking and Selection Computer Shell

The QuickBASIC software shell provides an interface between the user and the

Mathematica implementation of specific ranking and selection problems. It guides

the user through a series of menu-driven options and requests selections based on

the goal of the experiment. The choices selected provide the information necessary

to create a unique input file containing Mathematica commands.

This section describes the menu structure, and several general features of the

program. Appendix C contains the QuickBASIC code that created this menu struc-

ture.

3.3.1 Structure. The menu-driven program is structured into five levels as

shown in Figure 3.1. These menu levels and each menu option are briefly described.

LEVEL I Menu: This level contains one menu:

Ranking and Selection Problem Menu. The menu allows the choice of a normal

ranking and selection procedure based on either the means or the variances of the

populations. The option to rank populations by their variances has not yet been

implemented due to the scope of this thesis. Figure 3.2 displays the Level I Menu

Options.
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* Normal, Ranking Means. This option is chosen when the k populations being

compared follow a normal distribution. Populations are ranked based on each

population mean. The population means and the ranking of these means are

not known.

rrow f Rw~wd~ee*4 
EVHELI
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Em II tog Wino
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Figure 3.1 QuickBASIC Ranking and Selection Computer Shell Menu Structure
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o Normal, Ranking Variances. Although this choice currently is not available,

this menu option would be chosen when the normally distributed k populations

are ranked based upon each unique population variance.

RANKING AND SELECTION PROBLEMS

(Select option. You do not have to press ENTER)

Options for the Distributions are:

(1) Normal - Ranking Means

• (2) Normal - Ranking Variances

(3) Quit

(*) indicates option is not available

Select Option:

Figure 3.2 Level I Menu Options: Ranking and Selection Problems

LEVEL II Menu: This level contains two menus:

1. Normal, Ranking Means Menu. The user chooses an option based on whether

the population sample sizes are common and whether the population variances

are known. The option for procedures involving populations with unequal

sample sizes and unknown variances is not implemented due to the scope of

the thesis. Options from this menu are displayed in Figure 3.3.
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e Equal Sample Sizes, Known Variance. This option is chosen when there

is a common and unknown sample size, n, among all k populations. The

population variances must be known and equal.

* Unequal Sample Sizes, Known Variance. A user chooses this option when

it is impossible to obtain a common sample size from each of the k popu-

lations. The number of observations sampled from each population must

be known, since the software package does not solve for the most efficient

distribution of sample sizes between populations.

Normal - Ranking Means Menu

(Select option. You do not have to press ENTER)

Options are:

(1) Equal Sample Sizes, Known Variance

(2) Unequal Sample Sizes, Known Variance

* (3) Unequal Sample Sizes, Unknown Variance

(4) Quit

(*) indicates option is not available

Select Option:

Figure 3.3 Level II Menu Options: Normal, Ranking Means Menu

* Unequal Sample Sizes, Unknown Variance. Although not available, it is

included in the menu structure as a possible future addition to the com-

puter program.

2. Normal, Ranking Variance Menu. This menu has yet to be developed but

should contain options similar to the ranking means menu.

LEVEL III Menu: This level contains three menus:
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1. Normal, Ranking Means, Equal Sample Size, Known Variance Menu. Four op-

tions are available as shown in Figure 3.4. The primary goal of the experimenter

is to determine the common sample size among all populations to guarantee a

PCS. However, options to solve for the PCS, 6, and a are included for sensi-

tivity analysis purposes.

Normal-Rauking Means-

Equal Sample Size, Known Variance Menu

(Select option. You do not have to press ENTER)

Options are:

(1) Solve for Common Sample Size, n

(2) Solve for Probability of Correct Selection, PCS

(3) Solve for the Indifference Parameter, Delta

(4) Solve for Standard Deviation, Sigma

(5) Quit

Select Option:

Figure 3.4 Level III Menu Options: Normal, Ranking Means, Equal Sample Size,
Known Variance Menu

"* Solve for Common Sample Size, n. The goal is to determine the number

of observations required from each population to guarantee a desired PCS.

"* Solve for Probability of Correct Selection, PCS. The goal is to determine

the probability that the best population(s) is (are) correctly selected.

"* Solve for the Indifference Parameter, Delta. The goal is to determine the

smallest detectable practical difference between the best and next best

populations, given the desired PCS and the sample sizes. The practical

difference is measured as the difference in population means.
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e Solve for Standard Deviation, Sigma. The goal is to determine the stan-

dard deviation, common to all k populations, which satisfies the integral

expression.

2. Normal, Ranking Means,Unequal Sample Size, Known Variance Menu. This level

III menu provides choices dependent on the user's goal for problems involving

unequal population samples. Two options are available and are depicted in

Figure 3.5.

Normal-Ranking Means-

Unequal Sample Sizes, Known Variance

(Select option. You do not have to press ENTER)

Options are:

(1) Number of Best Populations is 1

* (2) Number of Best Populations is More Than 1

(3) Quit

(*) indicates option is not available

Select Option:

Figure 3.5 Level III Menu Options: Normal, Ranking Means, Unequal Sample Size,
Known Variance Menu

"* Number of Best Populations is 1. The goal is to select the best among k

populations. The options allow calculation of the probability of correct

selection or the indifference parameter associated with this best selection.

"* Number of Best Populations Is More Than 1. Although not implemented,

this menu option could be chosen when the k populations do not have a
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common number of sample observations and the goal is to select two or

more best populations.

3. Normal, Ranking Means, Unequal Sample Sizes, Unknown Variance Menu. This

menu could include multi-stage or sequential procedure options to estimate a

population variance. The development is left for future computer implementa-

tion.

LEVEL IV Menus: This level contains six menus; four for cases of equal pop-

ulation samples, and two for cases of unequal population samples.

Common Sample Size Menus. Each menu contains directions for the user to

enter numerical values from the keyboard. The QuickBASIC software code formats

these values into Mathematica language and creates a Mathematica input file. This

input file invokes one or more of the Mathematica computational files listed in Ap-

pendix D. These computational files solve the indifference-zone integral expression

for the particular parameter requested by the user in the menu selection. The four

Mathematica input file examples, corresponding to the four menu choices, are de-

picted in Appendix E.

Three of the four menus (solving for n, a, or 6) include a search parameter

option. In these menus, the program allows users to either submit their own search

parameters or to accept computed estimates. Appendix D explains the equations

and the computational files used to estimate the search values. The search value

option is not available in the 'Solve for PCS' menu since a root finding function is

not necessary to determine the PCS.

The four common-sample-size menus that are available to the user include the

following;

1. Normal, Ranking Means, Equal Sample Size, Known Variance, Solve for n. Fig-

ure 3.6 displays the directions for this option. The numerical values for the
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indifference parameter 6, the standard deviation o, the number of competing

populations k, the number of best populations t, and the desired PCS are

necessary to calculate an exact value for n.

2. Normal, Ranking Means, Equal Sample Size, Known Variance, Solve for PCS.

Figure 3.7 displays the directions for this option. Values for 6, a, k, t, and n

must be provided by the user.

3. Normal, Ranking Means, Equal Sample Size, Known Variance,Solve for Delta.

Figure 3.8 displays the directions for this option. Values for o, n, t, k, and

PCS must be provided by the user.

4. Normal, Ranking Means, Equal Sample Size, Known Variance, Solve for Sigma.

Figure 3.9 displays the directions for this option. Values for 6, n, k, t, and PCS

must be provided by the user.

Unequal Sample Size Menus.

5. One Best Population Menu. The two available options are depicted in Figure

3.10. In testing cases using the Mathematica computational algorithm, it was

discovered that the PCS and 6 values are dependent on how the sample sizes

are associated with the ordered populations. As defined in Chapter 2, n(,) is

the sample size associated with the population having ordered parameter 0[,I.

Since the sample sizes are assigned to the k populations without knowledge

of which one is best, there are (i), or k possible associations between the k

sample sizes and the best population. The QuickBASIC shell program writes

all k computational statements in the Mathematica language and Mathematica

performs k calculations of the PCS or 6 to determine the minimum value.

Computation time increases as k gets larger.
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Normal-Ranking Means-

Equal Sample Sizes, Known Variance - Solve for n

(Input value and hit the ENTER key)

(1) Enter indifference parameter, delta?

(2) Enter standard deviation, sigma?

(3) Enter number of populations to be ranked?

(4) Enter number of best populations desired?

(5) Enter desired probability of correct

select ion?

Do you want to enter your own search

values for n (Y or N)?

(if 'N' then the program computes values

for the search and items (6) and (7) are

skipped.) Y

(6) Enter first search value for n?

(7) Enter second search value for n?

(8) Enter the drive you want the exported file

on either A, B, or C (default is C):

(9) Enter the name of the data file,

(.txt data extension assumed)

(default is norm.txt):

Figure 3.6 Level IV Menu: Normal, Ranking Means, Equal Sample Size, Known
Variance, Solve for n Display
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Normal-Ranking Means-

Equal Sample Sizes, Known Variance-Solve for PCS

(Input value and hit the ENTER key)

(1) Enter indifference parameter, delta?

(2) Enter standard deviation, sigma?

(3) Enter number of populations to be ranked?

(4) Enter number of best populations desired?

(5) Enter sample size?

(6) Enter the drive you want the exported file

on either A, B, or C (default is C):

(7) Enter the name of the data file,

(.txt data extension assumed):

(default is norml):

Figure 3.7 Level IV Menu: Normal, Ranking Means, Equal Sample Size, Known
Variance, Solve for PCS Display
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Normal-Ranking Means-

Equal Sample Size, Known Variance-Solve for Delta

(Input value and hit the ENTER key)

(1) Enter standard deviation, sigma?

(2) Enter sample size?

(3) Enter number of populations to be ranked?

(4) Enter number of best populations desired?

(5) Enter desired probability of correct

selection?

Do you want to enter your own search

values for delta (Y or N)?

(If 'N' then the program computes values

for the search and items (6) and (7) are

skipped.) Y

(6) Enter first search value for delta?

(7) Enter second search value for delta?

(8) Enter the drive you want the exported file

on either A, B, or C (default is C):

(9) Enter the name of the data file,

(.txt data extension assumed),

(default is norml):

Figure 3.8 Level IV Menu: Normal, Ranking Means, Equal Sample Size, Known
Variance, Solve for Delta Display
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Normal-Ranking Means-

Equal Sample Sizes, Known Variance-Solve for Sigma

(Input value and hit the ENTER key)

(1) Enter indifference parameter, delta?

(2) Enter sample size?

(3) Enter number of populations to be ranked?

(4) Enter number of best populations desired?

(5) Enter desired probability of correct

selection?

Do you want to enter your own search

values for sigma (Y or N)?

(If 'N' then the program computes values

for the search and items (6) and (7) are

skipped.) Y

(6) Enter first search value for sigma?

(7) Enter second search value for sigma?

(8) Enter the drive you want the exported file

on either A, B, or C (default is C):

(9) Enter the name of the data file,

(.txt data extension assumed),

(default is norml):

Figure 3.9 Level IV Menu: Normal-Ranking Means-Equal Sample Size, Known
Variance-Solve for Sigma Display
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Normal-Ranking Means-

Unequal Sample Size, Common Variance

One Best Population

(Select option. You do not have to press ENTER)

Options are:

(1) Solving for PCS When Sample Sizes are Known

(2) Solving for Delta When Sample Sizes are Known

(3) Quit

Select Option:

Figure 3.10 Level IV Menu Options: Normal, Ranking Means, Unequal Sample
Size, Known Variance, One Best Population Menu

"* Solving for PCS When Sample Sizes are Known. This option leads to solv-

ing the unequal sample size indifference-zone integral expression for the

PCS.

"* Solving for Delta When Sample Sizes are Known. This menu option leads

to solving the unequal sample size indifference-zone integral expression for

the indifference parameter.

6. Number of Best Populations is More Than 1. This menu is not developed.

The extension of the algorithms developed for the t = 1 case required exces-

sive computation time when extended to cases where t > 1. Other approaches

should be developed to implement this option.

LEVEL V Menus: This level contains two menus for problems involving un-

equal population samples. Both require numerical values to be supplied by the user.
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Normal-Ranking Means-

Unequal Sample Sizes, Known Variance

One Best Population-Solve for PCS

(Input value and hit the ENTER key)

(1) Enter indifference parameter, delta?

(2) Enter standard deviation, sigma?

(3) Enter number of populations to be ranked?

(4) Enter first sample size?

Enter next sample size?

Figure 3.11 Level V Menu: Normal, Ranking Means, Unequal Sample Size, Known
Variance, Solve for the PCS Display

1. Normal, Ranking Means, Unequal Sample Size, Known Variance,

Solve for PCS Menu. Figure 3.11 displays the directions for this option. The

user provides numerical values for 6, ar, and k. The program also requests

the sample size for each population. Sample sizes can be placed in any order,

since the program permutes the sample size order to preduce various PCS's.

Mathematica produces all k PCS values and determines the minimum.

2. Normal, Ranking Means, Unequal Sample Size, Known Variance,

Solve for Delta Menu. Figure 3.12 displays the directions for this option. Nu-

merical values for the PCS, oa, k, and approximate search values for 6 must be

provided by the user. The user inputs the sample sizes in any order upon re-

quest. Since 6 is dependent upon the association between the sample sizes and

the best population, k permutations of the associations will produce different

6 values. Mathematica performs k calculations, produces the k values of 6, and

determines the minimum 6.
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Normal-Ranking Means-

Unequal Sample Sizes, Known Variance

1 Best Population-Solve for Delta

(Input value and hit the ENTER key)

(1) Enter the probability of correct selection, PCS?

(2) Enter standard deviation, sigma?

(3) Enter number of populations to be ranked?

(4) Enter first search value for delta?

(5) Enter second search value for delta?

(6) Enter first sample size?

Enter next sample size?

Figure 3.12 Level V Menu: Normal, Ranking Means, Unequal Sample Size, Known
Variance, Solving for Delta Display

3.3.2 Features. Several user-friendly features were added to the QuickBA-

SIC computer shell. The features include:

"* An option to quit at any menu level (except at Level V).

"* The capability to specify the disk drive on which the QuickBASIC file will be

saved. The default is the 'C' drive.

"* The capability to specify the name of the output file. The default is 'norml.txt'.

"* An option to recover after a menu choice selection or a numerical value in-

put. The program displays the option chosen and questions the user on their

selection.

"* A display which depicts the values chosen by the user prior to file creation.

Users are given a last chance to change any numerical values (only available
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on Level IV Equal Sample Size Displays). An example display is depicted in

Figure 3.13.

The following are the values that you assigned:

(1) delta= 4

(2) sigma= 10

(3) number of populations- 3

(4) number of best populations- 1

(5) desired PCSf .95

(6) first search value- 30

(7) second search value=35

(8) drive to store file=C

(9) name of exported fileinorml

Do you want to make any changes (Y or N or Q to Quit)?

Figure 3.13 An Example Value Check Provided by the QuickBASIC Software Pro-
gram(When the Program Provides Search Values)

Although the current computer program is limited in scope, it demonstrates

the feasibility of using Mathematica with a QuickBASIC interface to solve the in-

tegral expression characteristic of ranking and selection problems. Mathematica's

computational capability allows numerical analysis of the indifference-zone ranking

and selection procedures. The next chapter demonstrates this analysis for problems

involving unequal sample size populations.
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IV. Computer Program Implementation and Analysis

Chapter 2 developed the indifference-zone integral equations for both equal and

unequal population sample sizes. These equations were simplified to a form easily

manipulated by a mathematical computer software program. Chapter 3 explained

the computer program implemented to solve the integral equations for a variety

of experimental conditions. This chapter analyzes the numerical results obtained

from the computer program. The numerical values for both the equal and unequal

sample size cases are validated against Bechhofer's table. For the case of unequal

sample sizes, computer results are compared to the estimated PCS obtained using

the Gibbons, Olkin, and Sobel approximation as presented in Section 2.6. Several

conjectures for the unequal sample size case are made based on empirical observa-

tions. Although the attempts to prove these conjectures for the most general cases

were inconclusive, they are included for completeness.

4.1 Populations with Equal Sample Sizes

Equation (2.31) was developed to solve ranking and selection problems involv-

ing normally distributed populations with equal sample sizes. This equation was

rewritten in Mathematica code, placed in a file for Mathematica input, and used to

calculate numerical values for n. Appendix D contains this and all other Mathematica

computational files.

Ten cases were examined to compare the values obtained from the computer

software to those listed in Bechhofer's table [3:30-37]. The table includes several

hundred cases, where k and PCS span from 2 to 14 and .200 to .999 respectively.

Because of the massive amount of cases that could be tested, values of k, t and

PCS were arbitrarily chosen from the table. Values of a and e5 remained fixed at

10 and 4, respectively. For all attempted cases, the values of Vfri6/cr that were

obtained from the computer software program were compared with values obtained
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from Bechhofer's table. Most values matched exactly out to four decimal places.

This result suggests that the Mathematica coded formula can be reasonably relied

upon to solve the integral expression for the attempted equal sample sizes cases.

Cases outside of the tested range should be investigated to further substantiate the

validation. Table 4.1 summarizes the specific cases examined.

Table 4.1 A Comparison Between Bechhofer's Table Values and Mathematica for
Equal Sample Size Populations.

Bechhofer Mathematica
Case PCS V"-b/ o1 _ fb_/

k=2 t=l 0.95 2.3262 2.3261
k=3 t=1 0.88 2.0899 2.0899
k=4 t=1 0.55 0.9936 0.9936
k=4 t=2 0.97 3.3734 3.3733
k=5 t=1 0.90 2.5997 2.5997
k=5 t=2 0.70 1.9765 1.9765
k=6 t=1 0.60 1.4575 1.4575
k=6 t=2 0.99 4.2244 4.2244
k=6 t=3 0.82 2.6535 2.6534
k=7 t=1 0.75 2.0626 2.0626

There is a distinct advantage in using Mathematica to determine n or any of

the other parameters of interest. The computer program calculates an exact value

for a parameter given any PCS while Bechhofer's table lists specific PCS values. Ex-

periments involving PCS values not found in Bechhofer's table require interpolation

to use them. The computer program avoids the need to interpolate and provides

more precise numerical solutions.

A minor disadvantage was discovered in validating the cases using the computer

program. The indifference-zone integral expression using Mathematica is computa-

tionally intensive and time consuming. Although the program takes between 30 and

60 seconds to calculate the PCS, it takes up to three minutes to solve for n. This

can be cumbersome when examining more then one experimental case.
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* .

4.2 Populations With Unequal Sample Sizes

4.2.1 Computer Program Validation with Bechhofer's Tables.

Equation (2.45) was developed to solve ranking and selection problems involv-

ing populations of unequal sample sizes. A Mathematica computational file was

created to compute the unequal sample size expression. The file is essentially the

backbone of the computer software program for unequal sample size applications and

is partially validated in this section.

The same tables used to validate the equal sample size Mathematica formula-

tion can also be used to partly validate the unequal sample size computation. To

do so, ten cases defined by their k, t, and PCS values were arbitrarily chosen from

Bechhofer's table. A common value of n was determined from the table for each

case. In the Mathematica computation file, all k sample sizes were assigned this

same sample size and the PCS was computed. Since the equal saý ple size problem

is a special case of the unequal sample size problem, the Mathematica results should

agree with Bechhofer's table. A comparison between the PCS values as computed

by Mathematica and the PCS values derived from Bechhofer's table are depicted in

Table 4.2. The PCS values are approximately equal and vary only due to rounding

error associated with calculating n from Bechhofer's table.

4.2.2 Computer Program Validation with MATHCAD Software. The pre-

vious method validated the unequal sample size Mathematica computation for the

case of equal sample sizes. However, this method cannot confirm a correct PCS

when unequal sample sizes are involved. To validate the Mathematica computation,

MATHCAD, another mathematical software program, was coded with the same un-

equal sample size integral expression. Since Mathematica has a numerical precision

out to 16 decimal places and MATHCAD has a precision out to 15 decimal places,

a 0 between PCS values is applicable and meaningful. The MATHCAD code is

presented in Appendix F. Five cases for selecting the best of two populations with
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unequal sample sizes were examined. The computed PCS values are compared in

Table 4.3. PCS values are virtually identical in every case, further confirming that

Mathematica is correctly performing the unequal sample size computation.

Table 4.2 A Comparison of Specific Numeric PCS Values as Obtained from Bech-
hofer's Table and Mathematica for Unequal Sample Size Populations.
Note: 6/u =.4 For All Cases.

Bechhofer Mathematica
Case n PCS PCS

k=4 t=2 59.3208 0.950000 0.949997
k=5 t=1 8.5936 0.550000 0.550001
k=5 t=2 34.1960 0.800000 0.800008
k=6 t=1 51.2047 0.920000 0.920007
k=6 t=2 15.3938 0.500000 0.499987
k=6 t=3 35.6617 0.750000 0.749986
k=7 t=1 1.3248 0.250000 0.249996
k=7 t=3 46.4740 0.800000 0.800006

Table 4.3 A Comparison of Specific Numeric PCS Values as Obtained from Mathe-
matica and MATHCAD Computer Software Programs for Unequal Sam-
ple Size Populations in the Case of k=2 and t=1. Note: 6/u =.4 For All
Cases.

Mathematica MATHCAD
n(1) n(2) PCs PCs

15 20 0.879217 0.879216
30 24 0.927936 0.927936
29 30 0.937732 0.937732
60 45 0.978739 0.978740
57 60 0.984715 0.984717

4.2.3 Computer Program Validation With Published Methods. Gibbons,

Olkin and Sobel's (GOS) method for addressing the unequal sample size problem

was presented in Section 2.6. Their procedure estimates a common average sam-

ple size, no, in order to apply Bechhofer's table. A comparison between the PCS
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values obtained from the unequal sample size Mathematica computation and those

estimated by the GOS method further validates the computer program calculation.

Eight cases involving populations of unequal sample sizes were examined using

the square-mean-root formula (Equation (2.50)) to determine an average sample size,

no. Using no as the common sample size, the equal sample size Mathematica program

computed the GOS PCS values listed in Table 4.4. These values were compared to

the results of direct Mathematica computation of the PCS for the unequal sample

size case. The close agreement of the values for each case provides another indication

that Mathematica is correctly performing the unequal sample size computation.

Table 4.4 A Comparison of Specific Numeric PCS Values as Obtained from Math-
ematica and the Gibbons, Olkin, and Sobel (GOS) Method for Unequal
Sample Size Populations. Note: 6/bo =.4 For All Cases.

Sample Sizes Mathematica GOS
k t n(I) n(2) n(3) n(4) n(s) no PCs PCS
2 1 15 20 17.410254 0.879217 0.881035
2 1 60 45 52.230762 0.978739 0.979530
3 1 50 50 45 48.304073 0.953650 0.955212
3 2 50 50 45 48.304073 0.955703 0.955212
4 1 50 50 48 45 48.227965 0.935356 0.937845
4 2 50 50 48 45 48.227965 0.918771 0.918993
5 2 52 50 48 45 52 49.363776 0.892803 0.893866
5 3 52 50 48 45 52 49.363776 0.894263 0.893866

4.2.4 Empirical Computer Program Findings. For populations of unequal

sample sizes, many cases were investigated to determine any pattern that might

further simplify computer program implementation. Several conjectures are made

based on this analysis.

4.2•.4.1 Conjecture 1:. When one sample size is smaller than the rest,

randomly assigning the reduced sample size to the various populations produces the

same PCS value for the cases of k=2, 4, or 6 and t = k/2.
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Prior to experimentation, the experimenter does not know the order of the

population parameters (e.g. which populations have the larger or smaller means).

Therefore, the experimenter does not know which sample size is associated with the

best or worst population. Equation (2.45) implies that the PCS is dependent on the

association between the sample sizes and the ordered populations. This association

will henceforth be referred to as the sample size association. A specific sample size

association is the one-to-one correspondence of the unordered population sample

sizes, n., 1 < a < k, to each of the populations with ordered parameters, 0(q, where

oil] __ 01-1 _< Otkl.

When preparing the Mathematica input file to calculate either the PCS or 6,

the QuickBASIC computer software program allows the user to enter the sample

sizes in some initial, arbitrary order. The program associates a sample size to one

of the ordered populations based on this initial order (i.e. initially, n, is assigned

to the population with an ordered parameter, 0[l], n2 is assigned to the population

with a parameter 0e21, etc.) The program then produces Mathematica statements to

calculate PCS or 6 values for this assignment and every other possible sample size

association that produces a unique numerical PCS value.

For the particular case of k=2, 4, or 6 and t=k/2 when one sample size is

unequal, every sample size association appears to produce the same PCS or 6 values.

This phenomena can be exploited to enhance the efficiency of the computer software

program. Instead of computing values for every sample size association, only one

calculation is necessary.

This conjecture was based on the empirical results observed while testing the

Mathematica computation file for the unequal sample size case. The conjecture was

tested for

* k =2 and t =1,

* k =4 and t =2, and
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Sk =6 and t =3.

Various sample sizes were arbitrarily selected for each test condition. For the k pop-

ulations considered, k- 1 were assigned the nominal sample size, while the remaining

population was allotted a smaller number of sample observations. Throughout the

investigation, a and 6 remained fixed at 10 and 4 respectively. The resulting com-

parisons are presented in Tables 4.5, 4.6, and 4.7. The comparisons demonstrate the

independence of the PCS to the sample size associations when only one population

is alloted less then the nominal sample size.

Table 4.5 PCS Values as a Result of Varying Sample Size Associations for Unequal
Sample Size Populations in the Case of k =2, t =1. Note: b/l =.4 For
All Cases.

no() n(2) PCS
15 14 0.859124
14 15 0.859124
15 13 0.854424
13 15 0.854424
100 90 0.997047
90 100 0.997047

Cases in which two of the k populations were allotted one less observation were

also examined. PCS results are located in Tables H.1 and H.2 of Appendix H for the

cases of k =4, t =2 and k =6, t =3. When having more then one sample size that

is less then the nominal sample size, the PCS value varies depending on the sample

size association. Therefore, conjecture 1 appears to be true only when there is one

unequal sample size.

Conjecture 1 could possibly apply to any even k value when t=k/2, but the

result could not be proven for the general case. To document the approaches that

failed to produce the desired result, we include our several attempts in proving

Conjecture 1 using the simplest case of k=2 and t=1.
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Table 4.6 PCS Values as a Result of Varying Sample Size Association for Unequal
Sample Size Populations in the Case of k =4, t =2. Note: 6/ur =.4 For
All Cases.

n(j) n(2) n(3) n(4) PCS
15 15 15 14 0.64207
15 15 14 15 0.64207
15 14 15 15 0.64207
14 15 15 15 0.64207
15 15 15 13 0.63739
15 15 13 15 0.63739
15 13 15 15 0.63739
13 15 15 15 0.63739

Table 4.7 PCS Values as a Result of Varying Sample Size Association for Unequal
Sample Size Populations in the Case of k =6, t =3. Note: 6/- =.4 For
All Cases.

n(j) n(2) n(3) n(4) n(s) n(6) PCS
15 15 15 15 15 14 0.452412
15 15 15 15 14 15 0.452412
15 15 15 14 15 15 0.452412
15 15 14 15 15 15 0.452412
15 14 15 15 15 15 0.452412
14 15 15 15 15 15 0.452412
15 15 15 15 15 13 0.448719
15 15 15 15 13 15 0.448719
15 15 15 13 15 15 0.448719
15 15 13 15 15 15 0.448719
15 13 15 15 15 15 0.448719
13 15 15 15 15 15 0.448719
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Equation (2.49) displays the integral expression of the PCS for the specific case

of k=2 and t-l. It is not intuitively obvious from this equation that the PCS is

independent of the sample size association. In attempting to prove the conjecture

that the same PCS value is produced when randomly assigning the smaller sample

size to the various populations, several analytical methods are described below.

1. Equation Substitution using Total Sample Size, N, and a Proportion Variable,

A .

For the case of k=2 and t= 1, let the first sample size that the user initially

enters into the computer program be denoted n1 and the second sample size

be n2 . In Equation (2.49), n(i) denotes the sample size that is associated with

the lowest ranked population while n(2) is the sample size associated with the

highest ranked population. The first possible sample size association is

nfl) = nl (4.1)

and

n(2) = n2 -. (4.2)

When substituting this into Equation (2.49), this assignment directly results

in the following equation;

Q = 0 O[JnVIn2'•-(u) + bV./i/a]du. (4.3)

The second possible sample size association is

and

n(2) = nl, (4.5)
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which results in the following equation;

Q = j *IV/ns1(u) + bVi/uldu. (4.6)

Empirical evidence suggests that Equations (4.3) and (4.6) produce the same

PCS, given identical a, b, nj and n2. However, it is difficult to show that

these equations are equal except for specific PCS values. In order to better

demonstrate the equivalence, the total sample size, N, and a variable, A, which

partitions the total sample size into separate samples, are substituted into

Equations (4.3) and (4.6).

The total sample size, N, can be defined as

N = n1 + n2 = no() + n(2). (4.7)

The total sample size is partitioned between the first and second samples by

n1 = AN (4.8)

and

n2 = (1 - A)N, (4.9)

where 0 < A < 1. With these substitutions, Equation (4.3) becomes

Q(N,A) = f0i q[A/(1 - A)O-1 (u) + (l/u) VAN-N]du (4.10)

and Equation (4.6) becomes

Q(N, A) = foj 1[4(1 - •A)/A4-'(u) + (6/la) (1 - A)Nldu. (4.11)

Equations (4.10) and (4.11) are transformed expressions of Equations (4.3)

and (4.6) and yield the same PCS values. An equivalence between Equations

(4.10) and (4.11) is also difficult to prove due to the integration of u and the

complex form of the normal distribution. An equivalence becomes easier to
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see when specifying values for o, 6, and N. The PCS values expressed in

Equations (4.10) and (4.11) can be depicted by two-dimensional graphs, where

A is the independent variable. Figure 4.1 displays Equation (4.10) and Figure

4.2 displays Equation (4.11) for five specific cases, where ab/6 =.4 and N varies

from 20 to 100. In both figures, A varies from .01 to .99 to avoid singularities.

Appendix G contains similar graphs for other o/lb values.

S. .. . N=Wi0

0.9

0.7

0 O2 0.4 0.6 a0.I

LA~bda

Figure 4.1 PCS vs. A resulting from Equation (4.10) For Various N

An analysis of all graphs produced two results;

"* the two functions as defined by Equations (4.10) and (4.11) appear to be

equal for a fixed o and b (at least for the N values between 20 and 100),

and

"* the maximum Q values occur when A is .5 (n, = n2 ) regardless of N. This

result is discussed in a later section.

This demonstrates that for the case of unequal sample sizes of k=2 and t=1,

the PCS is a function of the total sample size, N, and its allocation between
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the two samples. Graphs for specific values help show the conjecture that any

random assignment of n, and n2 values to the ordered populations produces

the same PCS values. Although the conjecture appears to be true for the k =2

and t =1 case, the previous development is not a proof of this conjecture. A

proof could not be accomplished with this approach due to the complexity of

the involved expressions. Therefore, other attempts at proving this conjecture

for the k =2 and t =1 are undertaken.

N=8

0.9

0.7

0.6-

0 0.2 OA0.6 as1

Lambda

Figure 4.2 PCS vs. A resulting from Equation (4.11) For Various N

2. Analysis Using the Uniform Distribution

The behavior of the uniform distribution for the case of k=2 and t=1 is ana-

lyzed in another attempt to analytically prove the first conjecture for a simpli-

fied case. The uniform distribution is easier to integrate and it is hoped that

two results may transpire from this analysis:
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* that the development of an easily integrable form for the uniform distri-

bution might suggest a procedure to prove the results discovered for the

normal distributions, and

* that the PCS function for the unqual sample size case of the uniform

distribution will behave in a manner similar to the normal distribution.

If the behavior is similar, then proving the first conjecture for the uni-

form distributin will be analytically easier and can aide in proving the

conjecture for normally distributed populations.

Appendix A presents the full development and simplification of the integral

expression for populations following a uniform distribution, where the sample

sizes are unequal. The resulting equation from this development for the k=2

and t=1 case

Q - 1 - (n( 1 )p*"2))/(n(l) + n(2)), (4.12)

where 0 < p* < I and is specified by the experimenter. Since there are two pop-

ulations, there are two sample size associations that can occur. Equations (4.1)

and (4.2) describe the first possibility which can be substituted into Equation

(4.12) to become

Q - 1 - (nlp* 2)/(n, + n2). (4.13)

Equations (4.4) and (4.5) describe the second assigi.rnent possibility. These

are substituted into Equation (4.12) to become

Q = 1 - (n 2 p*l, )/(n 2 + n1). (4.14)

If we make the similar N and A substitutions as completed in the previous

development for the normal distribution, Equations (4.12) and (4.13) become

Q = 1 - AP*(l-A)N (4.15)
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and

Q = I- (1- A)p" . (4.16)

It is clear that Equations (4.15) and (4.16) are not equal. This is more evident

when graphing these functions for a specific value of p* and various values of

N. Figures 4.3 and 4.4 are two-dimensional representations of PCS values as

expressed by Equation (4.15) and (4.16) respectively. For each graph, N is

varied from 20 to 100, A is varied from 0 to 1, and p* is fixed at .9 (arbitrarily

chosen).

=10

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8

Lamnbd

Figure 4.3 PCS vs. A Resulting From Equation (4.15) For Various N

For unequal sample size cases of k=2 and t=1, the uniform distribution does

not demonstrate the same properties as the normal distribution. Unlike the

normal, the uniform distribution graphs show a dependence of the PCS on the

sample size association. Clearly, using the uniform distribution is not a fruitful
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approach to proving the sample size association conjecture. However, it does

indicate that the conjectured property of randomly assigning the sample sizes

to the ordered populations without effecting the PCS might be unique to the

normal distribution. Further investigation with other distributions is necessary

to explore this issue.

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.81

Lambda

Figure 4.4 PCS vs. A Resulting From Equation (4.16) For Various N

3. Series Expansion of Equations (4.10) and (4.11)

A third attempt was made to prove the conjecture that randomly assigning the

sample sizes to the ordered populations does not effect the PCS value for the

case of k=2 and t=1. This can be accomplished by proving Equations (4.10)

and (4.11) are equivalent. To do this, both of these equations were expanded

as a power series. If the equations are equivalent, the power series expansions

should be identical. If the series expressions are not equal, the stated conjecture

is clearly not true.

4-15



Mathematica was used to produce the series expansions of both Equations

(4.10) and (4.11). The format for the resulting series expansions were not the

same and they were much more complicated than expected. In fact, none of

the terms, neither the coefficients to each factor nor the factors themselves,

matched. Although inconclusive, further comparison and evaluation of the

power series expansion might be worth pursuing.

4.2-4.2 Conjecture 2:. The maximum PCS occurs when the sample

sizes are equal.

This second conjecture was noted previously when examining the two-dimensional

graphs of Equations (4.10) and (4.11). Figures 4.1 and 4.2 reveal that the maximum

PCS value for all the computed N 0 when X=.5.

In addition, PCS values were obtained from several unequal sample size cases

and compared to those obtained from cases of equal sample sizes. In every compari-

son where the total sample size, N, remained constant, cases involving equal samples

produced the highest PCS value. One such comparision is depicted in Table 4.8. Al-

though the table compares cases involving k =2, t =1 and N =20, the conjecture

applies to other k, t, and N values as well. Appendix G contains cases which further

support this conjecture.

The experimenter ideally wants a common sample size among all populations

to achieve the maximum PCS. If sample sizes are not equal for a fixed N, then a lower

PCS is expected. This result is not analytically proven in this thesis. However, an

initial approach might involve computing the second derivatives of Equations (4.10)

and (4.11) with respect to A for the case of k =2 and t =1.

4.2•.4.3 Conjecture 3:. For cases other than even k values where

t = k/2 and a single population contains less than the nominal sample size, the PCS
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Table 4.8 PCS Values as a Result of Keeping N constant and Varying the Portion
Size of nfl) and n(2) for Unequal Sample Size Populations in the Case of
k =2, t =1. Note: 6//a =.4 For All Cases.

nl) n(2) PCS
10 10 0.814453

11 9 0.813252
12 8 0.809582
13 7 0.803234
14 6 0.793822
15 5 0.780711
16 4 0.762863
17 3 0.738507
18 2 0.704247
19 1 0.651684

value is dependent on the association of the unequal sample sizes to the ordered

populations.

The first conjecture stated that for the t = k/2 case, an arbitrary assignment

of one unequal sample size to any of the competing populations does not effect the

PCS. However, this conjecture does not appear to be true for other cases of k and t.

For these other cases, a sample size can be initially assigned to an ordered population

and then reassigned to another ordered population, potentially producing a different

PCS value.

The ideal experimental situation involves populations represented by equal

sample sizes. It can be demonstrated that the PCS varies when slightly perturbing

the ideal experiment through the loss of sample observations. By varying the pop-

ulation assignments of the smaller sample sizes and computing the PCS, the effects

of the random sample size associations on the PCS value were observed. The three

experimental situations that were created to make this analysis include;

e losing one observation from one population sample,

* losing one observation from each of two population samples, and
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* losing two observations from one population sample.

For the specific samples sizes and 6/ur ratio, Tables 4.9 and 4.10 show that

the PCS varies depending on the sample size association for the specific cases where

k =3, t =1, and k =5, t =2, respectively. Appendix H, Tables H.1 through H.7 also

demonstrate this conjecture for a variety of cases.

Table 4.9 PCS Values as a Result of Varying Sample Size Association for Unequal
Sample Size Populations in the Case of k =3, t =1. Note: 6//a =.4 For
All Cases.

no) n(2) n(3) PCS
14 15 15 0.773356
15 14 15 0.773356
15 15 14 0.772478

14 14 15 0.769550
14 15 14 0.768738
15 14 14 0.768738
13 15 15 0.769064
15 13 15 0.769064
15 15 13 0.767318

In analyzing the numerical values, it was discovered that every possible sample

size association did not produce a unique PCS value. Sample sizes that are assigned

to the first k-t worst populations can be reassigned to any of these k-t populations

without varying the PCS. Also, sample sizes assigned to the last t best populations

can be reassigned to any of these t populations and maintain the same PCS value.

Therefore, the PCS will vary when a sample size reassignment involves a switch from

the worst k - t populations to the best t populations and vice versa.

For the tested cases, the conjecture that the PCS value is dependent on the

sample size association is important in designing the QuickBASIC computer program

used to calculate the PCS values. When sample sizes are not equal, an experimenter

might be interested in either the range of the PCS values or the worst possible PCS. If

it had been found that every possible sample size association produced different PCS
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values, a computer program would need to calculate the PCS for all combinations,

using extensive computer resources. Since it was observed that the PCS values differ

only when the sample size is reassigned from the first k-t to the last t populations

and vice versa, many computer calculations are eliminated, making a more efficient

computer program.

Table 4.10 PCS Values as a Result of Varying Sample Sim• Association for Unequal
Sample Size Populations in the Case of k =5, t =2. Note: b/lo =.4 For
All Cases.

n1) n(2) n(3) n14) n(5) PCs
14 15 15 15 15 0.553877
15 14 15 15 15 0.553877
15 15 14 15 15 0.553877
15 15 15 14 15 0.553634
15 15 15 15 14 0.553634
14 14 15 15 15 0.550191
14 15 14 15 15 0.550191
15 14 14 15 15 0.550191
14 15 15 14 15 0.549966
15 14 15 14 15 0.549966
15 15 14 14 15 0.549966
14 15 15 15 14 0.549966
15 14 15 15 14 0.549966
15 15 14 15 15 0.549966

15 15 15 14 14 0.549713
13 15 15 15 15 0.549786
15 13 15 15 15 0.549786
15 15 13 15 15 0.549786
15 15 15 13 15 **

15 15 15 15 13 **

** Computer software could not provide a
numerical answer for an unknown reason.

If an experimenter was only concerned with the worst possible PCS, a pro-

cedure which determines the exact sample size association needed to produce the

minimum PCS could additionally improve the efficiency of the QuickBASIC com-

puter program. Upon examining the data for the smallest PCS, the sample size
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associations to the ordered populations were observed. For cases involving k popula-

tions and t best populations, where t<k/2, and one unequal sample size is considered,

the smallest PCS 0 when the smallest sample size was assigned to one of the t best

populations. Similarly, for cases where t>k/2, the smallest PCS occured when the

smallest sample was assigned to one of the worst populations. Appendix H contains

more cases which further support this conjecture. A generalized proof is needed to

solidify the argument.

4.2.4.4 Conjecture 4:. For all general cases, minor changt•s in one or

two of the sample sizes (1 or 2 less observations) do not greatly effect the PCS.

Table 4.9, Table 4.10 and the tables located in Appendix H show the close

agreement of PCS values for minor changes in one or two sample observations. When

the range of possible PCS values is small for the unequal sample size case, Gibbons,

Olkin, and Sobel's (GOS) procedure for approximating a common sample size should

provide a reasonably accurate estimate of the PCS [4:50-51]. An option to provide

approximations such as the GOS procedure via the QuickBASIC menu would en-

hance the developed computer program. Currently, it takes over thirty minutes to

calculate all the PCS values for the case of unequal sample size, k =6 and t =1. An

approximation option could simplify the unequal sample size computation to one

calculation, but such an option is not yet available.

4.3 Chapter Summary

The computer program developed in this thesis can readily evaluate the integral

expression associated with ranking and selection problems involving the indifference-

zone formulation for normally distributed populations having common variance. For

equal sample size cases, computer implementation is consistent with published ta-

bles. Other validation methods suggest this to be true for cases of unequal sample

size, although a complete validation or proof was not accomplished. Conjectures
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were made based on empirical observations for the unequal sample size case. If

eventually proven, these conjectures could prove useful in improving the efficiency

of the computer program.
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V. Summary, Conclusions, and Recommendations

5.1 Summary

This thesis focused on the indifference-zone formulation of the ranking and

selecting problem for normally distributed populations with known variances. The

research objective was to develop computer software program to solve the parameters

of the indifference-zone integral expression presented by Barr and Rizvi for equal and

unequal sample sizes. A computer program was desired for four reasons:

"* The integral expression for the normal distribution is too complex to calculate

by hand.

"* Published tables include selected solutions to the integral expression for various

ranking and selecting problems but these tables are dispersed throughout the

literature; They are not available in any single convenient reference.

* Interpolation is sometimes necessary when using the published tables.

* Published tables only provide approximate solutions for unequal sample size

cases.

The computer program was developed using Math ematica and QuickBASIC.

Mathematica provides the intensive computational capability needed to numerically

evaluate statistical distributions and integral expressions, while the QuickBASIC

program creates an interactive interface between the user and Mathematica. While

the program relies on Mathematica and QuickBASIC, it does not require user famil-

iarity with either software package.

The development consisted of incorporating the integral expressions for both

the equal and unequal sample size cases into the computer program. In their paper,

Barr and Rizvi developed the integral expression for the case of comparing popu-

lations with a common sample size. The normal distribution was applied to this
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expression and simplified in order to create a Mathematica computational file. For

the populations of unequal sample sizes, an expression first needed to be developed,

then simplified for Mathematica implementation.

Once implemented, the Mathematica computations needed validation. The

equal sample size computation could be easily validated using a published table.

However, validating the unequal sample size computation proved difficult. Several

methods were introduced to partially validate this case.

Finally, cases involving populations with unequal sample sizes were empirically

analyzed. Based on the observed numerical values of the PCS, conjectures were

developed which, if proven to be true, might improve the efficiency of the computer

program. These conjectures are summarized below;

"* Conjecture 1: When one sample size is smaller than the rest, randomly assign-

ing the reduced sample size to the various populations produces the same PCS

value for the cases of k =2, 4, or 6 and t = k/2.

"* Conjecture 2: The maximum PCS occurs when the sample sizes are equal.

"* Conjecture 3: For cases other than even k values where t = k/2 and a single

population contains less than the nominal sample size, the PCS value is depen-

dent on the association of the unequal sample sizes to the ordered populations.

"* Conjecture 4: For all general cases, minor changes in one or two of the sample

sizes does not greatly effect the PCS.

5.2 Conclusions

Based on this research effort, several conclusions were made.

1. A computer program, based on existing software, can be implemented to handle

ranking and selection problems involving normally distributed populations of

known variance and equal or unequal sample sizes. Mathematica can solve
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the indifference-zone integral expression for a variety of experimental goals

including:

"* determining the common number of observations needed from each pop-

ulation to guarantee a PCS (equal sample size cases only),

"* determining the PCS, given the sample sizes,

"* determining the minimum indifference parameter, and

"* determining a change in the population standard deviation for sensitivity

analysis purposes (for equal sample size cases only).

2. The Mathematica computations that were created to solve the equal sample

size integral expression for the above mentioned parameters were validated

based on Bechhofer's published table [3:16-391.

3. The Mathematica computations that were created to solve the integral ex-

pression for unequal samples were only partially validated for particular cases.

Confidence increased when the PCS values computed with the unequal sample

size option compared well with

"* PCS values computed with the equal sample size option,

"• other computer software programs, and

"* published approximating methods.

4. Most empirical observations found for unequal sample size cases are difficult

to prove for general cases. Therefore, conjectures were made. It is only hy-

pothesized that these conjectures hold true beyond the cases that were tested

in this thesis.

5. The QuickBASIC interface program could be made more efficient based on the

truth of the stated conjectures for the unequal sample size cases.
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6. The QuickBASIC interface program and its menu-driven display is fully capa-

ble of creating Mathematica input files and could be extended for other ranking

and selection problems.

5.3 Recommendations

Several recommendations could either enhance the findings of this thesis or

provide the basis for additional research.

1. More numerical results from unequal sample size cases should be examined to

either support or disprove the stated conjectures.

2. Attention should be given to proving the general cases for the stated conjectures

made in unequal sample size cases. For instance;

"* To prove Conjecture 1, distributional forms other then the normal and

uniform should be examined to determine if this conjecture is unique to

the normal. Also, continuation of a series expansion of Equations (4.9)

and (4.10) to prove an equivalence between the two equations is worth

pursuing.

"* Also, to prove Conjecture 2, the second derivative of Equations (4.10) and

(4.11) should be analyzed to find the maximum PCS as a function of A.

3. The QuickBASIC computer program could be improved. Suggested improve-

ments are listed;

"* Include a display which shows the numerical input values for the unequal

sample size selections.

"* Include a recover option for the unequal sample size selections.

"* Make the menu-driven program more aesthetic to the user.

"* Incorporate other menu options into the computer program (e.g. Normal-

Ranking Variances).
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* Include an option for the user to choose an answer which is exact or ap-

proximate. For unequal sample size cases, an approximate answer may

take less computational time and provide a solution suitable to the user.

Bechhofer's table could be incorporated into the computer program, min-

imizing calculation.

9 Based on Conjecture 3, incorporate a procedure which directly determines

the minimum PCS for unequal sample size populations.

4. A QuickBASIC program should be created which can read the Mathematica

results file and format it into a table.

5. Other distributional forms, such as the uniform and exponential, should be

incorporated into the computer program to provide solutions to a wider scope

of ranking and selection problems.
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Appendix A. Indifference-Zone Formulation Derivation Involving

Uniformly Distributed Populations for Equal and Unequal Sample

Sizes

A.I Equal Sample Sizes

To derive an indifference-zone formulation for uniform populations of equal

sample sizes, we can directly apply either of the general formulas developed in Chap-

ter 2 (Equations (2.16) or (2.21)). Equation (2.21) is applied and is repeated here

for convenience:

Q = • Fkt-(y;0)[1 - F(y; 0(O))]`-1 dF(y; 0(0)). (A.1)

Consider a comparison of k uniformly distributed populations in which the goal

is to select t of them. A common sample size is taken from each of the populations

to guarantee a correct selection with a probability of at least P*. P* provides the

lower bound for Q (Q has to be at least P* or better). Since the uniform distribution

belongs to a scale parameter family, the CDF can be expressed as

F(ly; ) = F(y/O; 1). (A.2)

With this substitution, Equation (A.1) becomes

Q = tL Fkt (y/O; 1)[1 - F(y/lo(O); 1)] t-dF(y/ik(O); 1). (A.3)

Because the uniform distribution is a member of a scale parameter family, we can

choose k(0)=O/p*, where p* is specified by the experimenter (0 < p* < 1, since

0 < 0(0)). Making this substitution, Q becomes a function of 0. Therefore, an

expression for any distribution with equal sample sizes that is a member of a scale

parameter family can be expressed as

/0
Q= t Fk-(y/O; 1)[1 - F(yp*/O; 1)]ildF(yp*/O; 1). (A.4)
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If we let X1 ,..., X,, be the sample of n independent observations from a uniform

distribution, the PDF is

g(x/e; 1) 1/0 <X<0,0<0 (A.5)
10 elsewhere

If we consider Y = max(X1 ,..., XJ), then the CDF for Y is

0 y <O

F(y/O; 1) (y/O) 0 _< y < 0 (A.6)

and therefore, its FDF is

f(y/O;1)= I nyn-1/On <3y< (A.7)
0 elsewhere

These distributions for the Y statistic are substituted into Equation (A.4), forcing

a change in integration limits and becoming

Q = tj"(y/O)n(k-t)[ - (yp*/O)nhit-Inyn-llp*"/Ondy. (A.8)

To simplify Equation (A.8), let

u = (yp*/O)" (A.9)

so that

ulp'n = (ylO)" (A.1O)

and

du = nyn-lp*"/Ondy. (A.11)
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The final expression of the PCS for populations involving uniform distributions with

equal sample sizes becomes

Q = t jo(U/p.")k-t(l - u)t-du, (A.12)

where Q is a strictly increasing function of n. Therefore, there is a minimum n value

for which Q > P*, the specified PCS [2:16-18]. Equation (A.12) provides an easy,

integrable equation to solve for either n, the PCS, or p* when all other variables are

known.

A.2 Unequal Sample Sizes

We can use either Equation (2.10) or (2.18) from Chapter 2 to develop a

formula for problems involving uniformly distributed populations of unequal sample

sizes. Equation (2.10) is chosen and is repeated here for convenience;

k-t 00 k-tk
P = E__fi Fy~b(y) 11 [1- Fy()(y)lfy(,)(y)dy. (A.13)

" "= -,=1 a=k-t+1
b~i

The CDF and the PDF expressions, which are eventually substituted into the above

equation are listed in Equations (A.14) through (A.17);

0 y<0

Fy(b)(y) = (y/O0[6)n(b) 0 <_ y < O[b] (A.14)

I O[b] •-- Y

0 Y, y<0

F{(°,(y) = (y/I[a])n(_) 0 < y < 0["] (A.15)

1 0[a) < y
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0 Y <0

Fy(,)= (Y/O[,)",, 0 _< Y < 01.1 (A.16)
1 8[j) _5 Y

n(jy"yNO-1/on(,) 0 < Y <0,1(.7

fy(i) (Y) = M elsewhere

Before substitution, we can take the limit of the probability in Equation (A.13)

as we let the parameters of the first k-t populations approach 0, and the parameters

of the last t populations approach a function of 6, or O/p. This limit can be expressed

as

k-t • k-tF (
Q lim _ fi Fyb(y) fi [1 - Fy(°)(y)]fy(,)(y)dy. (A.18)

Ib ba a=k-t+l

After taking the limit, the CDF's and PDF's can be expressed as functions of specific

parameters, namely 0, n and O/p*;

k-t eok-t k

=Q=E fiF(y;O,n(b)) fI [1- F(y;O/p',n(.))]f(y;O,n(,))dy. (A.19)

When making the substitutions expressed in Equations (A.14) through (A.17), the

limits of integration change and Equation (A.19) becomes

k-t 0 -t k

Q= E -II (y/6)nb 1-[ [1 - (yp*/O)f(a)]n(,)yn(i)-r/O6(i)dy. (A.20)
"i=1 bi a=k-t+X
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A dummy variable u can be defined as

U=y/0, (A.21)

where

y = u0 (A.22)

and

du = (1/0)dy. (A.23)

These substitutions change the limits of integration and Equation (A.20) becomes

Q = jI(u)'Q' fi - (up*)n-(,)(n,,)(uO)'•,)i-/O9ni4-)du. (A.24)
i=1 b- a=k-t+l

b~i

Terms cancel and the equation can be simplified to the general formula of

k-i Ik-t k

Q =E Jf(u)n(•) II [1 - (up*)n'a)jn(i)(u)ni)-'du. (A.25)
"i=1 b. I a=k-t+l

b~i

A.2.1 Case when t=1. For the particular case of any k and t=1, Equation

(A.25) can be expressed as

k-I 1k-I

Q= II J(u)ul(b) H[I1- (up*)(o)]a(nt)(u)n0'N-du. (A.26)
i=l b--I a=k

b:Ai

This simplifies to
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k-I 1 k-I

Q = j [1 - (up)"(h)]n(i)(u)•)-W lI(u)'(')du (A.27)
i=1 6-1

which is the simplest form that this expression takes for this particular case.

A.2.2 Case when k=2 and t=1. For this case, Equation (A.26) can be

represented as

Q= * I(u)-(b) fI[i - (up*)N6)]n(,)(u)'•)-du. (A.28)

i1 b=1 a=2

b~i

This equation simplifies in the following steps;

Q= Jo0[ - (up*)t12)Jn(j)(u)n"')-1du, (A.29)

Q = nf() jo un(')- 1[1 - (up*)'(2)]du, (A.30)

Q = n(1) 1/[UnT)-1_ -un(1)-l(up*)?12)]du, (A.31)

and

Q = no()[1] un(1)_1du - p. "(2)] U,•)+n(2)_ldu]. (A.32)

Integrating leads to

Q = n(j)[(1/n(1)) - pn(2) (1/(n(j) + n(2)))], (A.33)

or

Q = 1 - (n(I)p" 2 )/(n(j) + n(2 )), (A.34)

which is the same expression as Equation (4.12) in Chapter 4.
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Appendix B. Directions for Operating the Ranking and Selection

Computer Software Program Using the AFIT UNIX Operating

System

1. Load the QuickBASIC executable file onto a PC MS-DOS compatible com-

puter. The file is currently titled 'Normal.exe'.

2. In the directory in which 'Normal.exe' is loaded, enter 'Normal' at the prompt.

3. The QuickBASIC menu selection will begin. Make the menu selections and

enter the numerical values as directed. The program will ask for a file name

and a disk drive on which to save the created file for input into Mathematica;

* If saving the input file to a floppy diskette, select the appropriate floppy

dj-ive, d, and go to Step 4.

* If saving to the computer hard drive, ensure that the computer can con-

nect to the UNIX operating system. Select the appropriate hard drive

which allows this connection and go to Step 6.

Loading the Input File From A Floppy Disk.

4. To load the Mathematica input file on the SUN SPARC work stations, inject the

floppy diskette into the work station and enter the following UNIX commands:

* 'mcopy d:ifllename ifilename', where 'ifilename' is the name that was given

for the file, and

0 'msdos2unix ifilename ifilename' which transfers the file text from ASCII

to UNIX format.

5. Go to step 11
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Transferring the Input File To A Workstation.

6. To transfer the Mathematica input file from the computer hard drive to the

workstation, you must be in the same directory and drive as the saved input

file.

7. Enter 'ftp (SUN Sparc machine name)' for transferring files to the UNIX system.

Some of the machine names used at AFIT are 'eel', 'cod', and 'alligator'.

8. The system will prompt for a username and password which should be entered

by the user.

9. Enter the command 'send ifilename' to transfer the file, where 'ifilname' is the

name of the saved file.

10. Now you can either login to the UNIX operating system via the SUN Sparc

workstations, or remote login from the PC that you used to transfer the input

file. Either login should give a UNIX prompt.

11. The UNIX command 'math<ifilename >ofilename' can now be entered. Math-

ematica responds to the statements in the input file and stores results in the

output file named 'ofilename'. The output file will be created in the same

UNIX directory that the UNIX command 'math' is entered.

12. A UNIX prompt signifies the completion of the calculation and the output file

'ofilename' is ready to view in the UNIX operating system.
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Appendix C. QuickBASIC Code for Ranking and Selection

Menu-Driven Computer Program

REM Version 1.0 December 2 1993
DIM SS(500)
COLOR 14, 1
1 CLS
REM
REM Level I Menu
REM
LOCATE 6, 15: PRINT "RANKING AND SELECTION PROBLEMS"
LOCATE 7, 15: PRINT ""

LOCATE 8, 15: PRINT "(Select option. You do not have to press
ENTER)"

LOCATE 9, 15: PRINT ""

LOCATE 10, 15: PRINT "Options for the Distributions are:"
LOCATE 11, 15: PRINT ""

LOCATE 12, 15: PRINT " (1) Normal - Ranking Means"
LOCATE 13, 15: PRINT "* (2) Normal - Ranking Variances"
LOCATE 14, 15: PRINT " (3) Quit"
LOCATE 15, 15: PRINT ""

LOCATE 16, 15: PRINT "(*) indicates option is not available"
LOCATE 17, 15: PRINT ""

10 LOCATE 18, 15: PRINT "Select Option:"
100 D$ - INKEY$: IF D$ = "" THEN GOTO 100
REM
REM The following questions the user whether they have made the
REM correct choice
REM
200 IF D$ = "1" THEN

LOCATE 19, 15: PRINT "You have selected the Normal,
Ranking Means"

LOCATE 20, 15: PRINT "Menu. Is this where you want to go
(Y OR N)?"
220 D$ = INKEY$: IF D$ = "" THEN GOTO 220

IF D$ = "Y" THEN
GOTO 300

ELSEIF D$ = "N" THEN
GOTO 1

ELSE
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GOTO 220
END IF

ELSEIF D$ - "2" THEN
LOCATE 19, 15: PRINT "Option not available at this time."
LOCATE 20, 15: PRINT "Reselect Option:"
GOTO 10

REM
REM The following QUIT option is available on most of the menu
REM choices
REM

ELSEIF D$ - "3" THEN
LOCATE 21, 15: PRINT "You have selected to Quit"
LOCATE 22, 15: PRINT "Is this what you want to do

(Y or N?):"
240 D$ a INKEY$: IF D$ - "" THEN GOTO 240

IF D$ - "Y" THEN
STOP

ELSEIF D$ - "N" THEN
GOTO 1
ELSE
GOTO 240
END IF

END IF
300 CLS
REM
REM Level II Menu
REM
LOCATE 6, 15: PRINT "Normal - Ranking Means Menu"
LOCATE 7, 15: PRINT ""

LOCATE 8, 15: PRINT "(Select option. You do not have to press
ENTER)"

LOCATE 9, 15: PRINT ""

LOCATE 10, 15: PRINT "Options are:"
LOCATE 11, 15: PRINT ""

LOCATE 12, 15: PRINT " (1) Equal Sample Sizes, Known Variance"
LOCATE 13, 15: PRINT " (2) Unequal Sample Sizes, Known Variance"
LOCATE 14, 15: PRINT "* (3) Unequal Sample Sizes, Unknown Variance"
LOCATE 15, 15: PRINT " (4) Quit"
LOCATE 16, 15: PRINT ""

LOCATE 17, 15: PRINT " (*) indicates option is not available"
LOCATE 18, 15: PRINT ""

399 LOCATE 19, 15: PRINT "Select Option:"
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400 D$ - INKEY$: IF D$ - "" THEN GOTO 400
500 IF D$ - "1" THEN

LOCATE 20, 15: PRINT "You have selected the Equal
Sample Sizes"

LOCATE 21, 15: PRINT "option. Is this where you want to go
(Y or N)?"

520 D$ - INKEY$: IF D$ - "" THEN GOTO 520

IF D$ - "Y" THEN
GOTO 600

ELSEIF D$ - "N" THEN
GOTO 300

ELSE
GOTO 520

END IF
ELSEIF D$ - "2" THEN

LOCATE 20, 15: PRINT "You have selected the Unequal Sample
Size"

LOCATE 21, 15: PRINT "option. Is this where you want to go
(Y or N)?"

540 D$ - INKEY$: IF D$ - "" THEN GOTO 540
IF D$ a "Y" THEN

GOTO 1300
ELSEIF D$ - "N" THEN

GOTO 300
ELSE

GOTO 540
END IF

ELSEIF D$ a "3" THEN
LOCATE 20, 15: PRINT "Option not available at this time."
LOCATE 21, 15: PRINT "Reselect Option:"
GOTO 399

ELSEIF D$ -- "4" THEN
LOCATE 20, 15: PRINT "You have selected to Quit"
LOCATE 21, 15: PRINT "Is this what you want to do (Y or N)?"

560 D$ = INKEY$: IF D$ - "" THEN GOTO 560

IF D$ = "Y" THEN
STOP

ELSEIF D$ = "N" THEN
GOTO 300

ELSE
GOTO 560

END IF
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END IF
600 CLS
REM
REM Level III Menu
REM
LOCATE 6, 15: PRINT "Normal-Ranking Means-Equal Sample Size,
Known Variance Menu"
LOCATE 7, 15: PRINT ""

LOCATE 8, 15: PRINT "(Select option. You do not have to press
ENTER)"

LOCATE 9, 15: PRINT ""

LOCATE 10, 15: PRINT "Options are:"
LOCATE 11, 15: PRINT ""

LOCATE 12, 15: PRINT "(1) Solve for Common Sample Size, n"
LOCATE 13, 15: PRINT "(2) Solve for Probability of Correct Selection,
PCS"
LOCATE 14, 15: PRINT "(3) Solve for the Indifference Parameter,
Delta"

LOCATE 15, 15: PRINT "(4) Solve for Standard Deviation, Sigma"
LOCATE 16, 15: PRINT "(5) Quit"
LOCATE 17, 15: PRINT ""
610 LOCATE 18, 15: PRINT "Select Option:"
620 D$ - INKEY$: IF D$ = "" THEN GOTO 620
640 IF D$ - "1" THEN

LOCATE 19, 15: PRINT "You have selected to solve for Sample
Size."

LOCATE 20, 15: PRINT "Is this what you want to do (Y or N)?"
642 D$ - INKEY$: IF D$ - "" THEN GOTO 642

IF D$ - "Y" THEN
GOTO 900

ELSEIF D$ = "N" THEN
GOTO 600

ELSE

GOTO 642
END IF

ELSEIF D$ = "2" THEN
LOCATE 19, 15: PRINT "You have selected to solve for the

PCS."
LOCATE 20, 15: PRINT "Is this what you want to do

(Y or N)?"
644 D$ = INKEY$: IF D$ = "" THEN GOTO 644

IF D$ = "Y" THEN
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GOTO 1000
ELSEIF D$ - "N" THEN

GOTO 600
ELSE

GOTO 644
END IF

ELSEIF D$ - "3" THEN
LOCATE 19, 15: PRINT "You have selected to solve for the

indifference"
LOCATE 20, 15: PRINT "parameter. Is this what you want to do

(Y or N)?"
646 D$ - INKEY$: IF D$ - "" THEN GOTO 646

IF D$ - "Y" THEN
GOTO 1100

ELSEIF D$ = "N" THEN
GOTO 600

ELSE
GOTO 646

END IF
ELSEIF D$ - "4" THEN

LOCATE 19, 15: PRINT "You have selected to solve for the
standard"

LOCATE 20, 15: PRINT "deviation. Is this what you want to do
(Y or N)?"
648 D$ - INKEY$: IF D$ - "" THEN GOTO 648

IF D$ - "Y" THEN
GOTO 1200

ELSEIF D$ - "N" THEN
GOTO 600

ELSE
GOTO 648

END IF
ELSEIF D$ - "5" THEN

LOCATE 19, 15: PRINT "You have selected to Quit"
LOCATE 20, 15: PRINT "Is this what you want to do (Y or N)?"

650 D$ = INKEY$: IF D$ = "" THEN GOTO 650
IF D$ - "Y" THEN

STOP
ELSEIF D$ - "N"' THEN

GOTO 600
ELSE

GOTO 650
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END IF
END IF

900 CLS
REM
REM Level IV Menu solving for n. It asks for numerical answers
REM from the user.
REM
LOCATE 6, 15: PRINT "Normal-Ranking Means-Equal Sample Sizes,

Known Variance - Solve for n"
LOCATE 7, 15: PRINT ""

LOCATE 8, 15: PRINT "(Input value and hit the ENTER key)"
LOCATE 9, 15: PRINT ""

INPUT "(1) Enter indifference parameter, delta"; del
INPUT "(2) Enter standard deviation, sigma"; sig
INPUT "(3) Enter number of populations to be ranked"; k
INPUT "(4) Enter number of best populations desired"; t
INPUT "(5) Enter desired probability of correct selection"; PCS
REM
REM The user has the option of either entering their own
REM search values for n or having Mathematica do this
REM for them. If letting the software compute values,
REM then another Mathematica computation file is called
REM upon to compute two approximate search values.
REM This option is available for equal sample sizes
REM when solving for delta and sigma also.
REM
LOCATE 15, 10: PRINT "Do you want to enter your own

search values
for n (Y or N)?"
LOCATE 16, 10: PRINT "(If 'N' then the program computes values
for the
search)"

904 DS$ = INKEY$: IF DS$ "" THEN GOTO 904
IF DS$ = "Y" THEN
INPUT "(6) Enter first search value for n"; fst
INPUT "(7) Enter second search value for n"; sec
ELSEIF DS$ = "N" THEN
GOTO 905
ELSE
GOTO 904
END IF

REM
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REM The user has the option to save to a specific drive and
REM file name.
REM
905 LOCATE 19, 15: PRINT "(8) Enter the drive you want the
exported file on,"

LOCATE 20, 15: PRINT " either A, B, or C (default is C):"
910 INPUT DN$

IF DN$ - "" THEN
DN$ - "C"

END IF
LOCATE 21, 15: PRINT "(9) Enter the name of the data file,"
LOCATE 22, 15: PRINT " (.txt data extension assumed),"
LOCATE 23, 15: PRINT " (default is noral):"
920 INPUT NF$

IF NF$ - "" THEN

NF$ - "norml"
END IF

930 IN$ - DN$ + ":" + NF$ + ".txt"

940 CLS
REM
REM The following screen allows the user to check the numerical
REM values that he entered and change them if necessary.
REM
941 LOCATE 6, 15: PRINT "The following are the values that you
assigned:"

LOCATE 7, 15: PRINT "(1) delta-"; del
LOCATE 8, 15: PRINT "(2) sigma-"; sig
LOCATE 9, 15: PRINT "(3) number of populations-"; k
LOCATE 10, 15: PRINT "(4) number of best populations="; t
LOCATE 11, 15: PRINT "(5) desired PCS-"; PCS

IF DS$ - "Y" THEN

LOCATE 12, 15: PRINT "(6) first search value for n-";
fst

LOCATE 13, 15: PRINT "(7) second search value for n-";
sec

ELSE
GOTO 942

END IF
942 LOCATE 14, 15: PRINT "(8) drive to store file-"; DN$

LOCATE 15, 15: PRINT "(9) name of exported file="; NF$
LOCATE 16, 15: PRINT ""
LOCATE 17, 15: PRINT "Do you want to make any changes (Y or N
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or Q to Quit)?"
950 D$ = INKEY$: IF D$ = "" THEN GOTO 950
IF D$ a "Y" THEN

LOCATE 18, 15: PRINT "Which value do you want to chauge?"
LOCATE 19, 15: PRINT "(enter number in parenthesis)"

952 DV$ a INKEY$: IF DV$ = "" THEN GOTO 952
IF DV$ = "1" THEN

CLS
INPUT "(1) Enter indifference parameter, delta"; del
GOTO 940

ELSEIF DV$ = "2" THEN
CLS
INPUT "(2) Enter standard deviation, sigma"; sig
GOTO 940

ELSEIF DV$ = "3" THEN
CLS
INPUT "(3) Enter number of populations to be ranked"; k
GOTO 940

ELSEIF DV$ = "4"1 THEN
CLS
INPUT "(4) Enter number of best populations desired"; t
GOTO 940

ELSEIF DV$ = "5" THEN
CLS
INPUT "(5) Enter desired probability of correct selection";

PCS
GOTO 940

ELSEIF DV$ = "6" THEN
CLS
INPUT "(6) Enter first search value for n"; fst
GOTO 940

ELSEIF DV$ = "7" THEN
CLS
INPUT "(7) Enter second search value for n"; sec
GOTO 940

ELSEIF DV$ = "8" THEN
CLS
LOCATE 19, 15: PRINT "(8) Enter the drive you want the

exported file on,"
LOCATE 20, 15: PRINT " either A, B, or C (default is C):"

954 DN$ = INKEY$: IF DN$ = "" THEN 954
956 IN$ = DN$ + ":" + NF$ + ".txt"
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GOTO 940
ELSEIF DV$ - "9" THEN

CLS
LOCATE 21, 15: PRINT "(9) Enter the name of the data file,"
LOCATE 22, 15: PRINT " (.txt data extension assumed),"
LOCATE 23, 15: PRINT " (default is Noral):"

958 INPUT NF$
960 IN$ - DN$ + ":" + NF$ + ".txt"

GOTO 940
ELSE

GOTO 950
END IF

ELSEIF D$ = "N" THEN
GOTO 970

ELSEIF D$ = "Q" THEN
GOTO 5000

ELSE
GOTO 952

END IF
970 OPEN IN$ FOR OUTPUT AS #1
REM
REM The following is the file created to input into the
REM Mathematica program.
REM
PRINT #1, "<<normeq"

PRINT *1, "delta I", del
PRINT #1, "sigma =1", sig
PRINT #1, "k=i", k
PRINT #1, "t=", t
PRINT #1, "pr-", PCS
REM
REM If the user wants Mathematica to compute search values then
REM the following file is invoked.
REM

IF DS$ = "N" THEN
PRINT #1, "<<nest"

ELSE
REM
REM Otherwise, the user inputs the search values for n.
REM

PRINT #1, "fst~t,k]=", fst
PRINT #1, "sec[t,k]"", sec
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END IF
PRINT #1, "R[t,kpr]//N"
CLOSE #1
GOTO 5000
1000 CLS
REM
REM Level IV Menu, solving for PCS. The rest of the equal sample
REM size menus and options are similar to the previous,
REM solve for n menu and options.
REM
LOCATE 6, 15: PRINT "Normal-Ranking Means-Equal Sample Sizes,
Known Variance-Solve for PCS"
LOCATE 7, 15: PRINT ""

LOCATE 8, 15: PRINT "(Input value and hit the ENTER key)"
LOCATE 9, 15: PRINT ""

INPUT "(1) Enter indifference parameter, delta"; del
INPUT "(2) Enter standard deviation, sigma"; sig
INPUT "(3) Enter number of populations to be ranked"; k
INPUT "(4) Enter number of best populations desired"; t
INPUT "(5) Enter sample size"; n
LOCATE 19, 15: PRINT "(6) Enter the drive you want the exported
file on,"

LOCATE 20, 15: PRINT " either A, B, or C (default is C):"
1010 INPUT DN$

IF DN$ - "" THEN
DN$ = "C"

END IF
LOCATE 21, 15: PRINT "(7) Enter the name of the data file,"
LOCATE 22, 15: PRINT " (.txt data extension assumed),"
LOCATE 23, 15: PRINT " (default is norml) :"
1020 INPUT NF$

IF NF$ = "" THEN
NF$ - "normi"

END IF
1030 IN$ = DN$ + ":" + NF$ + ".txt"
1040 CLS
1041 LOCATE 6, 15: PRINT "The following are the values that you
assigned:"

LOCATE 7, 15: PRINT "(1) delta="; del
LOCATE 8, 15: PRINT "(2) sigma="; sig
LOCATE 9, 15: PRINT "(3) number of populations."; k
LOCATE 10, 15: PRINT "(4) number of best populations-"; t
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LOCATE 11, 15: PRINT "(5) sample size-"; n
LOCATE 12, 15: PRINT "(6) drive to store file-"; DN$
LOCATE 13, 15: PRINT "(7) name of exported file-"; NF$
LOCATE 14, 15: PRINT ""

LOCATE 15, 15: PRINT "Do you want to make any changes AY or N
or Q to Quit)?"
1050 D$ - INKEY$: IF D$ - "" THEN GOTO 1050
IF DA = "Y" THEN

LOCATE 16, 15: PRINT "Which value do you want to change?"
LOCATE 17, 15: PRINT "(enter number in parenthesis)"

1052 DV$ - INKEY$: IF DV$ - "" THEN GOTO 1052
IF DV$ - "1" THEN

CLS
INPUT "(1) Enter indifference parameter, delta"; del
GOTO 1040

ELSEIF DV$ - "2" THEN
CLS
INPUT "(2) Enter standard deviation, sigma"; sig
GOTO 1040

ELSEIF DV$ = "3" THEN
CLS
INPUT "(3) Enter number of populations to be ranked"; k
GOTO 1040

ELSEIF DV$ = "4" THEN
CLS
INPUT "(4) Enter number of best populations desired"; t
GOTO 1040

ELSEIF DV$ - "5" THEN
CLS
INPUT "(5) Enter common sample size"; n
GOTO 1040

ELSEIF DV$ = "6" THEN
CLS
LOCATE 19, 15: PRINT "(6) Enter the drive you want the

exported file on,"
LOCATE 20, 15: PRINT " either A, B, or C (default is C):"

1054 DN$ - INKEY$: IF DN$ = "" THEN 1054
1056 IN$ = DN$ + ":" + NF$ + ".txt"

GOTO 1040
ELSEIF DV$ = "7" THEN

CLS
LOCATE 21, 15: PRINT "(7) Enter the name of the data file,"
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LOCATE 22, 15: PRINT " (.txt data extension assumed),"

LOCATE 23, 15: PRINT " (default is Norml):"
1058 INPUT NF$
1060 IN$ - DN$ + ":" + NF$ + ".txt"

GOTO 1040
ELSE

GOTO 1050
END IF

ELSEIF D$ - "N" THEN
GOTO 1070

ELSEIF D$ -"Q" THEN
GOTO 5000

ELSE
GOTO 1052

END IF
1070 OPEN IN$ FOR OUTPUT AS #2
PRINT #2, "<<normeq"
PRINT #2, "delta-", del
PRINT #2, "sigma-", sig
PRINT #2, "k-", k
PRINT #2, "t=", t
PRINT #2, "n-", n
PRINT #2, "Q[n,t,k]//N"
CLOSE #2
GOTO 5000
1100 CLS
LOCATE 6, 15: PRINT "Normal-Ranking Means-Equal Sample Sizes,
Known Variance-Solve for Delta"
LOCATE 7, 15: PRINT ""

LOCATE 8, 15: PRINT "(Input value and hit the ENTER key)"
LOCATE 9, 15: PRINT ""

INPUT "(1) Enter standard deviation, sigma"; sig
INPUT "(2) Enter sample size"; n
INPUT "(3) Enter number of populations to be ranked"; k
INPUT "(4) Enter number of best populations desired"; t
INPUT "(5) Enter desired probability of correct selection"; PCS
LOCATE 15, 10: PRINT "Do you want to enter your own search values
for delta (Y or N)?"

LOCATE 16, 10: PRINT "(If 'N' then the program computes values for
the search)"
1104 DS$ = INKEY$: IF DS$ = "" THEN GOTO 1104

IF DS$ "Y" THEN
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INPUT "(6) Enter first search value for delta"; fat
INPUT "(7) Enter second search value for delta"; sec
ELSEIF DS$ a "N" THEN
GOTO 1105
ELSE
GOTO 1104
END IF

1105 LOCATE 19, 15: PRINT "(8) Enter the drive you want the
exported file on,"

LOCATE 20, 15: PRINT " either A, B, or C (default is C):"
1110 INPUT DN$

IF DN$ - "' THEN
DN$ l "C"

END IF
LOCATE 21, 15: PRINT "(9) Enter the name of the data file,"
LOCATE 22, 15: PRINT " (.txt data extension assumed),"
LOCATE 23, 15: PRINT " (default is norul) :"
1120 INPUT NF$

IF NF$ - "" THEN

NF$ = "noral"
END IF

1130 IN$ = DN$ + ":" + NF$ + ".txt"
1140 CLS
1141 LOCATE 6, 15: PRINT "The following are the values that you
assigned:"
LOCATE 7, 15: PRINT "(1) sigma-"; sig
LOCATE 8, 15: PRINT "(2) sample size-"; n
LOCATE 9, 15: PRINT "(3) number of populations-"; k
LOCATE 10, 15: PRINT "(4) number of best populations-"; t
LOCATE 11, 15: PRINT "(5) desired PCS-"; PCS

IF DS$ = "Y" THEN
LOCATE 12, 15: PRINT "(6) first search value for delta-";

fst
LOCATE 13, 15: PRINT "(7) second search value for delta=";

sec
ELSE

GOTO 1142
END IF

1142 LOCATE 14, 15: PRINT "(8) drive to store file="; DN$
LOCATE 15, 15: PRINT "(9) name of exported file="; NF$
LOCATE 16, 15: PRINT ""

LOCATE 17, 15: PRINT "Do you want to make any changes (Y or N
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or Q to Quit)?"
1150 D$ - INKEY$: IF D$ - "" THEN GOTO 1150
IF D$ - "Y" THEN

LOCATE 18, 15: PRINT "Which value do you vant to change?"
L 11TE 19, 15: PRINT "(enter number in parenthesis)"

1152 DV$ - INKEY$: IF DV$ - "" THEN GOTO 1152
IF DV$ = "1" THEN

CLS
INPUT "(1) Enter standard deviation, sigma"; sig
GOTO 1140

ELSEIF DV$ a "2" THEN
CLS
INPUT "(2) Enter sample size, n"; n
GOTO 1140

ELSEIF DV$ "3" THEN
CLS
INPUT "(3) Enter number of populations to be ranked"; k
GOTO 1140

ELSEIF DV$ - "4" THEN
CLS
INPUT "(4) Enter number of best populations desired"; t
GOTO 1140

ELSEIF DV$ = "5" THEN
CLS
INPUT "(5) Enter desired probability of correct selection";

PCs
GOTO 1140

ELSEIF DV$ = "6" TMEN
CLS
INPUT "(6) Enter first search value for delta"; fst
GOTO 1140

ELSEIF DV$ = "7" THEN
CLS
INPUT "(7) Enter second search value for delta"; sec
GOTO 1140

ELSEIF DV$ - "8" THEN
CLS
LOCATE 19, 15: PRINT "(8) Enter the drive you want the

exported file on,"
LOCATE 20, 15: PRINT " either A, B, or C (default is C):"

1154 DN$ = INKEY$: IF DN$ = "" THEN 1154
1156 IN$ - DN$ + ":" + NF$ + ".txt"
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GOTO 1140
ELSEIF DV$ - "9" THEN

CLS
LOCATE 21, 15: PRINT "(9) Enter the name of the data file,"
LOCATE 22, 15: PRINT " (.txt data extension assumed),"
LOCATE 23, 15: PRINT " (default is Norml):"

1158 INPUT NF$
1160 IN$ - DN$ + ":" + NF$ + ".txt"

GOTO 1140
ELSE

GOTO 1150
END IF

ELSEIF D$ - "N" THEN
GOTO 1170

ELSEIF D$ - "Q" THEN
GOTO 5000

ELSE
GOTO 1152

END IF
1170 OPEN IN$ FOR OUTPUT AS #3
PRINT #3, "<<normeqd"

PRINT *', "sigma-", sig
PRINT #3, "n=", n
PRINT #3, "k--", k
PRINT #3, "t'I", t
PRINT #3, "pr-", PCS

IF DS$ = "N" THEN
PRINT #3, "<<dest"

ELSE
PRINT #3, "fst[t,k] =", fst
PRINT #3, "sec(t,k]=", sec

END IF
PRINT #3, "R[t,k,pr]//N"
CLOSE #3
GOTO 5000
1200 CLS
LOCATE 6, 15: PRINT "Normal-Ranking Means-Equal Sample Sizes,

Known Variance-Solve for Sigma"
LOCATE 7, 15: PRINT ""

LOCATE 8, 15: PRINT "(Input value and hit the ENTER key)"
LOCATE 9, 15: PRINT ""

INPUT "(1) Enter indifference parameter, delta"; del

C-15



INPUT "(2) Enter sample size"; n
INPUT "(3) Enter number of populations to be ranked"; k
INPUT "(4) Enter number of best populations desired"; t
INPUT "(5) Enter desired probability of correct selection"; PCS
LOCATE 15, 10: PRINT "Do you want to enter your own search values
for sigma (Y or N)?"

LOCATE 16, 10: PRINT "(If 'N' then the program computes values for
the search)"

1204 DS$ = INKEY$: IF DS$ = "" THEN GOTO 1204
IF DS$ = "Y" THEN
INPUT "(6) Enter first search value for sigma";

fst
INPUT "(7) Enter second search value for sigma";

sec
ELSEIF DS$ = "N" THEN
GOTO 1205
ELSE
GOTO 1204
END IF

1205 LOCATE 19, 15: PRINT "(8) Enter the drive you want the
exported file on,"

LOCATE 20, 15: PRINT " either A, B, or C (default is C):"
1210 INPUT DN$

IF DN$ - "" THEN
DN$ = "C"

END IF
LOCATE 21, 15: PRINT "(9) Enter the name of the data file,"
LOCATE 22, 15: PRINT " (.txt data extension assumed),"
LOCATE 23, 15: PRINT " (default is norm1):"
1220 INPUT NF$

IF NF$ = "" THEN
NF$ = "normi"

END IF
1230 INS = DN$ + ":" + NF$ + ".txt"
1240 CLS
1241 LOCATE 6, 15: PRINT "The following are the values that you
assigned:"

LOCATE 7, 15: PRINT "(1) delta-"; del
LOCATE 8, 15: PRINT "(2) sample size="; n
LOCATE 9, 15: PRINT "(3) number of populations="; k
LOCATE 10, 15: PRINT "(4) number of best populations="; t
LOCATE 11, 15: PRINT "(5) desired PCS="; PCS
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IF DS$ - "Y" THEN
LOCATE 12, 15: PRINT "(6) first search value for sigma-"; fst
LOCATE 13, 15: PRINT "(7) second search value for sigma-"; sec

ELSE
GOTO 1242

END IF
1242 LOCATE 14, 15: PRINT "(8) drive to store file-"; DN$
LOCATE 15, 15: PRINT "(9) name of exported file-"; NF$
LOCATE 16, 15: PRINT ""

LOCATE 17, 15: PRINT "Do 2ou want to make any changes (Y or N
or Q to Quit)?"

1250 D$ = INKEY$: IF D$ - "" THEN GOTO 1250
IF D$ = "Y" THEN

LOCATE 18, 15: PRINT "Which value do you want to change?"

LOCATE 19, 15: PRINT "(enter number in parenthesis)"
1252 DV$ - INKEY$: IF DV$ * "" THEN GOTO 1252

IF DV$ - "1" THEN
CLS
INPUT "(1) Enter indifference parameter, delta"; del
GOTO 1240

ELSEIF DV$ = "2" THEN
CLS

INPUT "(2) Enter sample size, n" ; n
GOTO 1240

ELSEIF DV$ - "3" THEN
CLS
INPUT "(3) Enter number of populations to be ranked"; k
GOTO 1240

ELSEIF DV$ = "4" THEN
CLS
INPUT "(4) Enter number of best populations desired"; t
GOTO 1240

ELSEIF DV$ = "5" THEN
CLS
INPUT "(5) Enter desired probability of correct selection";

PCS
GOTO 1240

ELSEIF DV$ = "6" THEN
CLS
INPUT "(6) Enter first search value for sigma"; fst
GOTO 1240

ELSEIF DV$ = "7" THEN
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CLS
INPUT "(7) Enter second search value for sigma"; sec
GOTO 1240

ELSEIF DV$ - "8" THEN
CLS
LOCATE 19, 15: PRINT "(8) Enter the drive you want the

exported file on,"

LOCATE 20, 15: PRINT " either A, B, or C (default is C):"
1254 DN$ - INKEY$: IF DN$ = "" THEN 1254
1256 IN$ - DN$ + ":" + NF$ + ".txt"

GOTO 1240
ELSEIF DV$ = "9" THEN

CLS
LOCATE 21, 15: PRINT "(9) Enter the name of the data file,"
LOCATE 22, 15: PRINT " (.txt data extension assumed),"
LOCATE 23, 15: PRINT " (default is Norml):"

1258 INPUT NF$
1260 IN$ - DN$ + ":" + NF$ + ".txt'"

GOTO 1240
ELSE

GOTO 1250
END IF

ELSEIF D$ = "N" THEN
GOTO 1270

ELSEIF D$ = "Q" THEN
GOTO 5000

ELSE
GOTO 1252

END IF
1270 OPEN IN$ FOR OUTPUT AS #4
PRINT #4, "<<normeqs"
PRINT #4, "delta-", del
PRINT #4, "n-", n
PRINT #4, "k-", k
PRINT #4, "t-", t
PRINT #4, "pr-", PCS

IF DS$ = "N" THEN
PRINT #4, "<<sest"

ELSE
PRINT #4, "*fst[t,k]"', fst
PRINT #4, "sec[t,k]-", sec

END IF
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PRINT #4, "R[t,kpr]//N"
CLOSE #4
GOTO 5000
1300 CLS
REM
REM The following begins the Level III unequal sample size menu
REM options. At this time, the user can only choose one
REM population from k.
REM
LOCATE 6, 15: PRINT "Normal-Ranking Means-Unequal Sample Sizes,

Known Variance"
LOCATE 7, 15: PRINT ""

LOCATE 8, 15: PRINT "(Select option. You do not have to press
ENTER)"

LOCATE 9, 15: PRINT "'

LOCATE 10, 15: PRINT "Options are:"
LOCATE 11, 15: PRINT ""

LOCATE 12, 15: PRINT " (1) Number of best populations is 1"
LOCATE 13, 15: PRINT "* (2) Number of best populations is
more than 1"
LOCATE 14, 15: PRINT " (3) Quit"
LOCATE 15, 15: PRINT ""

LOCATE 16, 15: PRINT "(*) indicates option is not available"
LOCATE 17, 15: PRINT ""

1309 LOCATE 18, 15: PRINT "Select Option:"
1310 D$ = INKEY$: IF D$ = "" THEN GOTO 1310
1320 IF D$ = "1" THEN

LOCATE 20, 15: PRINT "You have selected the t-1 option."
LOCATE 21, 15: PRINT "Is this what you want to do

(Y or N)?"
1330 D$ = INKEY$: IF D$ = "" THEA GOTO 1330

IF D$ = "Y" THEN
GOTO 1400

ELSEIF D$ = "N" THEN
GOTO 1300

ELSE
GOTO 1330

END IF
ELSEIF D$ = "2" THEN

LOCATE 20, 15: PRINT "Option not available at this time"
LOCATE 21, 15: PRINT "Reselect Option:"
GOTO 1309
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ELSEIF D$ - "3" THEN
LOCATE 20, 15: PRINT "You have selected to Quit."
LOCATE 21, 15: PRINT "Is this what you want to do

(Y or N)?"
1340 D$ - INKEY$: IF D$ = "" THEN GOTO 1340

IF D$ = "Y" THEN
STOP

ELSEIF D$ - "N" THEN
GOTO 1300

ELSE
GOTO 1340

END IF
END IF

1400 CLS
REM
REM Level IV options for unequal sample sizes. Can solve for
REM delta or the PCS.
REM
LOCATE 6, 15" PRINT "Normal-Ranking Means-Unequal Sample Size,

Common V - i -nce"
LOCATE 7, 15: PRINT "1 Best Population"
LOCATE 7, 15: PRINT "; ",; ""

LOCATE 8, 15: PRINT "(Select option. You do not have to press
ENTER)"

LOCATE 9, 15: PRINT ""

LOCATE 10, 15: PRINT "Options are:"
LOCATE 11, 15: PRINT ""

LOCATE 12, 15: PRINT "(1) Solving for PCS When Sample Sizes
are Known"
LOCATE 13, 15: PRINT "(2) Solving for Delta When Sample Sizes
are Known"
LOCATE 14, 15: PRINT "(3) Quit"
LOCATE 15, 15: PRINT ""
1409 LOCATE 16, 15: PRINT "Select Option:"
1410 D$ = INKEY$: IF D$ = "" THEN GOTO 1410
1412 IF D$ = "1" THEN

LOCATE 20, 15: PRINT "You have selected to solve for
the PCS."

LOCATE 21, 15: PRINT "Is this what you want to do
(Y or N)?"
1420 D$ = INKEY$: IF D$ = "" THEN GOTO 1420

IF D$ = "Y" THEN
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GOTO 1500
ELSEIF D$ a "N" THEN

GOTO 1400
ELSE

GOTO 1420
END IF

ELSEIF D$ a "2" THEN
LOCATE 20, 15: PRINT "You have selected to solve

for delta"
LOCATE 21, 15: PRINT "Is this what you want to do

(Y or N)?"
1430 D$ = INKEY$: IF D$ * "" THEN GOTO 1430

IF D$ - "Y" THEN

GOTO 1600
ELSEIF D$ - "N" THEN

GOTO 1400
ELSE

GOTO 1430
END IF

ELSEIF D$ - "3" THEN
LOCATE 20, 15: PRINT "You have selected to Quit."
LOCATE 21, 1S: PRINT "Is this what you want to do

(Y or N)?"
1440 D$ = INKEY$: IF D$ m "' THEN GOTO 1440

IF D$ = "Y" THEN
STOP

ELSEIF D$ = "N" THEN
GOTO 1400

ELSE
GOTO 1440

END IF
END IF

1500 CLS
REM
REM Level V Menu option for unequal sample sizes, solving
REM for the PCS. The program asks the user input.
REM k sample sizes should be entered.
REM
LOCATE 6, 15: PRINT "Normal-Ranking Means-Unequal Sample Sizes,

Known Variance"
LOCATE 7, 15: PRINT "1 Best Population-Solve for PCS"
LOCATE 8, 15: PRINT "'
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LOCATE 9, 15: PRINT "(Input value and hit the ENTER key)"
LOCATE 10, 15: PRINT ""

INPUT "(1) Enter indifference paranter, delta"; del
INPUT "(2) Enter standard deviation, sigma"; sig
INPUT "(3) Enter number of populations to be ranked"; k
INPUT "(4) Enter first sample size"; SS(1)
Q=2
DO

INPUT "Enter next sample size"; SS(Q)
Q=Q+ I

LOOP WHILE (Q < k + 1)
CLS
LOCATE 19, 15: PRINT "Enter the drive you want the exported
file on,"
LOCATE 20, 15: PRINT "either A, B, or C (default is C):"
1510 INPUT DN$

IF DN$ "" THEN
DN$ = "C"

END IF
LOCATE 21, 15: PRINT "Enter the name of the data file,"
LOCATE 22, 15: PRINT "(.txt data extension assumed),"
LOCATE 23, 15: PRINT "(default is norml):"
1520 INPUT NF$

IF NF$ = "" THEN
NF$ = "normi"

END IF
1530 IN$ = DN$ + ":" + NF$ + ".txt"

OPEN IN$ FOR OUTPUT AS #5
REM
REM The program automatically arranges the sample size ordering
REM to produce k PCS values. It does this by switching
REM all of the k-i sample sizes with the kth sample size.
REM Defining m and n as tables allows the program
REM to keep track of this ordering and output the
REM ordering that corresponds to the PCS value. The user
REM can look at the output to determine the
REM sample size order that corresponds to the lowest PCS.
REM
PRINT #5, "<<normueq"
PRINT #5, "delta=", del
PRINT #5, "sigma-", sig
PRINT #5, "k=", k
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PRINT #5, "u-Table [x,{k}]"
PRINT #5, "n-Table[x,{k}]"
ft-I

ss(o) - SSWk)
DO

Q-i
DO

PRINT #5, "n[["; Q; ")) -", ss(Q)
Q-Q+ I

LOOP WHILE (Q < k + 1)
PRINT #5, "Q[k]//N"
PRINT #5, "mEC"; R; "]]-NCJ]"
SWAP SS(k), SS(k - R + 1)
SWAP SS(k), SS(k - R)
R-R+l

LOOP WHILE (R < k + 1)
PRINT #5, "Minmm]"
CLOSE #5
GOTO 5000
1600 CLS
REM
REM The following Level V Menu solves for the indifference
REM parameter for unequal sample sizes. It follows a
REM similar procedure as the previous one.
REM
LOCATE 6, 15: PRINT "Normal-Ranking Means-Unequal Sample Size,

Known Variance"
LOCATE 7, 15: PRINT "1 Best Population-Solve for Delta"
LOCATE 8, 15: PRINT ""

LOCATE 9, 15: PRINT "(Input value and hit the ENTER key)"
LOCATE 10, 15: PRINT ""

INPUT "(1) Enter the desired probability of correct selection, PCS";
PCS
INPUT "(2) Enter standard deviation, sigma"; sig
INPUT "(3) Enter number of populations to be ranked"; k
INPUT "(4) Enter first search value for delta"; fst
INPUT "(5) Enter second search value for delta"; sec
INPUT "(6) Enter first sample size"; SS(1)
Q-2
REM The following statement sums the square roots of the
REM sample sizes for the GOS procedure. This is an
REM addition to the program to have the software determine
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REM search values for delta. Currently the user has to
REM enter their own values into the computer. If this
REM addition is eventually implemented, the above
REM input statements (4) and (5) can be remarked out or
REM the user can be provided an option of whether to
REM enter their own values or rely on the computer,
REM similar to the equal sample size options.
REM
SK a SQR(SS(1))
DO

INPUT "Enter next sample size"; SS(Q)
REM Want to sum the the square roots of the sample sizes to get an
REM estimate for n, an average sample size. Then we can use the
REM GOS approximation and determine search values for delta,
REM using the fitted regression equation obtained from
REM Bechhofer's Table (see Appendix D).
REM
SM = SQR(SS(Q)) + SM

Q=Q4I

LOOP WHILE (Q < k + 1)
CLS
LOCATE 19, 15: PRINT "Enter the drive you want the exported
file on,"

LOCATE 20, 15: PRINT "either A, B, or C (default is C):"
1610 INPUT DN$

IF DN$ - "" THEN
DN$ = "C"

END IF
LOCATE 21, 15: PRINT "Enter the name of the data file,"
LOCATE 22, 15: PRINT "(.txt data extension assumed),"
LOCATE 23, 15: PRINT "(default is normi):"
162( INPUT NF$

IF NF$ = "" THEN

NF$ = "normI"
END IF

1630 IN$ = DN$ + ":" + NF$ + ".txt"
OPEN IN$ FOR OUTPUT AS #6
REM The following remarked out statements were added to the
REM program. This addition allows the delta search
REM values to be estimated by the same fitted equation
REM that was previously used in the equal sample
REM size computation files. Here, the equations are the
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REM same, only implemented in QuickBASIC instead of
REM Mathezatica. The fitted equation can be used since
REM an average n is calculated using the GOS procedure.
REM This should provide two reasonable values to
REM initiate the search for delta.
REM
REM NO - (SM / k)
REM EP a EXP(ATN(PCS I SQR(1 - (PCS) - 2)))
REM TV1 - -3.12497 + .34799 * k + .42398 - .01989 * k 2
REM TV2 - -. 10058 + .04482 * k + 1.43618 * EP + .00108 * k 2 * EP
REM TV3 - -. 01819 * k * EP- .00462* k *EP + .01263 *EP -

.06606 * EP
REM TV M TV+ + TV2 + TV3
REM fst = TV * sig / NO
REM sec - 1.1 * fst
PRINT #6, "<<normueqd"
PRINT #6, "q[kJ]"; PCS
PRINT #6, "sigma."; sig
PRINT #6, "k-"; k
PRINT #6, "m-Table [x,{k}J"
PRINT #6, "n-Table[x,{k}]"
R- 1
SS(0) = SS(k)
DO

Q-1
DO

PRINT #6, "n[["; Q; '1] ", SS(Q)

LOOP WHILE (Q < k + 1)
PRINT #6, "DL"; k; ","; PCS; ","; fst; ","' sec; "]/IN"
PRINT #6, "Im[["; R; "JJN-EJ"
SWAP SS(k), SS(k - R 4 1)
SWAP SS(k), SS(k - R)
R-R+1

LOOP WHILE (R < k + 1)
PRINT #6, "Min[m]"
CLOSE #6
5000 END
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Appendix D. Mathematica Computational Files

This appendix contains files created in Mathematica to calculate the indifference-

zone integral expression and the search values needed by Mathematica's root finding

function.

D. 1 Files Used To Calculate the Indifference-Zone Integral Ezpression for Various

Parameters

The QuickBASIC menu program calls upon one of these fies, depending on

the parameter that is unknown to the experimenter. These Mathematica statements

are based on the integral expressions developed in Chapter 2.

<<Statit ics 'Cont inuousDistributions'
F[t] :-CDF[NormalDistribution[O 1] ,t]
G [p] :Quantile [NormalDistribution[0,1) ,p)
Q [n., t_, _,k- i:t*NIntegrate [(F [G [u) + (delta/sigma)*Sqrt En))) (k-t) *
(-u) (t-i), {uO,1}]
R[t_ ,k_ ,pr_] :=FindRoot[Q[n,t,k] -upr,{n,fsttt,k],sec[t,k]})

Figure D.1 'Normeq' Mathematica File Used To Solve For the PCS or n For Normal
Populations of Equal Sample Size.

<<Statistics'ContinuousDistributionsu
F [t_ :-CDF [NormalDistribution [0,1) ,t]
G [p] :-Quantile [NornalDistribution[0,1) ,p]
Q[delta., t_, k_] :=t*NIntegrate[(FEG[u]+(delta/sigma)*Sqrt[n])) (k-t)*
(1-u) (t-) ,{uO,1}]
R[t_,,k_,pr-]:-FindRoot[Q[delta,t,k]=ffpr,{deltafst[t,k] ,sec t,kJ}J

Figure D.2 'Normeqd' Mathematica File Used To Solve For the Indifference Param-
eter For Normal Populations of Equal Sample Size.
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«<Statistics 'ContinuouuDistributions'
F(t- : -CDF (NormalDistribution (0,1iJ,tJ
G (p..): -Quant ii. NormalDistribut ion (0.1] pJ
Q (sigma...,t...,k_]-t*Nlntegrate ((F (G Eu] (delta/sigma) *Sqrt En]]) (k-t) *
(1-u)-(t-1) ,{u,O,1}J
R~t..,k_.,pr-]:=FindRoot[Q[sigpa,t~klmupr,{sigma,:fut[t,k) ,sec~t~kJ})

Figure D.3 'Normeqs' Mathematica File Used To Solve For the Standard Deviation
For Normal Populations of Equal Sample Size.

«<Statistics 'ContinuousDistributions'
F ft-]:-CDF(NormalDistribution(O,1J ,t)
G (p.]:aQuantile(NormalDistribution[O, 1],pJ
Q[k-]J:.mNlntegrate[NProduct[F[(Sqrt~n[[iJ]/n[(kJJJ)*GfuJ4
(Sqrtfn([i]]J/sipma)*deltaJ ,{i,1,k-1}J ,{u,0,1}J

Figure D.4 'Normueq' Mathematica File Used To Solve For the PCS For Normal
Populations of Unequal Sample Size.

«<Statistics 'ContinuousDistributions'
F (t-]:CDF (NormalDistribution [0, 1),t)
G (p.] iQuantile [NormalDistribution [0,1] ,pI
Q~k...,deltai :-Nlntegrate(NProduct EFE(Sqrt nEn(i]J/n[E~kfl))*G~u)4
(Sqrt~nEEiJ]]/sigma)*delta),{,i,l,k-l}J,{u,0,1})
D Ek..,pr-.,fst-.,secj :-FindRootEQ [k,deltalu'upr,{delta,fst ,sec}J

Figure D.5 'Normueqd' Mat hematica File Used To Solve For Indifference Parameter
for Normal Populations of Unequal Sample Size.
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D.2 Files Used To Estimate Search Values For Mathematica's Root Finding Func-

tion

The files listed in Figures D-6, D-7, and D-8 automatically compute the search

values needed to determine n, delta, and sigma, respectively, for the equal sample

size case. These search values are computed using

TV = -3.12497 + 0.34799k + 0.42398t - 0.01989k 2 - 0.10058t 2 + 0.04482kt

+1.43618p + 0.00108k 2p _ 0.01819kp - 0.00462ktp + 0.01263t 2p

-0.06606tp

where TV = 6 V/'n/l is the tabulated value from Bechhofer's table,

k = the number of populations under consideration,

t the number of populations to be selected, and

p - exp(arcsin (pr)) is a transformation of the PCS.

The expression for TV is a least squares approximation of 500 values arbitrarily

chosen from Bechhofer's table ' [3:30-361. The approximating equation has a fairly

high coefficient of determination (R2 =0.9800, adjusted R2 =0.9796) and generally

predicts values within ten percent of those in the table.

The predicted value for TV is used to approximate the search values for n, 6,

or o, through simple algebraic manipulation. For example, n = (TVo/6) 2 would be

the first search parameter needed to solve the integral expression for n. The second

search parameter is a factor of 1.1 times the first.

IDr. David Barr produced the expression using STATISTIX, a statistical computer software
package.
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p [pr-i : inExp (ArcS ini [pr)
TV~t-.,k- :=-3.12497+.3479*k+.42398*t-(.01989*(k-2))-(.10058*(t-2))+
(.04482*k*t).(1 .43618*p~prJ )+( .00108(k-2)*p~pr) )-( .01819*k*p[pr] )-
(.00462*k*t*p~prJ)+(.01263*(t-2)*p~prJ)-(.06606*t*p~prl)
f st t..,k...J:u(TV~t kJ *sigua/delta) ̂ 2
secft..,k...J:=.1O*fst[t~kJ:fst~t,kI

Figure D.6 'Nest' Mathematica File Used To Estimate Two Search Values for n,
the Common Sample Size.

p [pr-..: -Exp [ArcS in [pr]JI
rV~t...,k-.j:=-3. 12497+.3479*k4.42398*t-(.O1989*Ck'-2))-(.1OO58*(t-2)).
(.04482*k*t)+C1.43618*p~prJ)+(.00108Ck-2)*p~pr))-(.01819*k*p~pr))-
(.00462*kstsp~pr )4( .01263*(t-2)*ptpr3) -( .06606*t*ptprl)
fst Ct..,k-]:u(TV~t kJ *sina./sqrt En))
sec~t...k..J:-.1O*fst~t,kJ+fst~t,kJ

Figure D.7 'Dest' Mathematica File Used To Estimate Two Search Values for b,
the Indifference Parameter.

p Epr-i : -Exp [ArcS in Eprj I
TV~t..,k...) -3. 12497+.3479*k+.42398*t-(.O1989*(k'-2))-(. 1OO58*(t-2))+
C.O4482*k*t)+(1.43618*p~prJ)4(.OO1O8(k-2)*p[pr))-(.O1819*k*p~prJ)-
(.00462*k*t*p~pr )4( .01263*(t-2)*p~prj )-( .06606*t*p[pr])
f at Ct..,k-..) (Sqrt En)*delta/TV~t ,kJ)
aec[t-.,k-.] :i.1O*fst~t~kJ~fat~t,k]

Figure D.8 'Sest' Mathematica File Used To Estimate Two Search Values for a,
the Standard Deviation.
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Appendix E. Examples of QuickBASIC Output Files For Input Into

Mathematica

The following figures are examples of the files that are created by the Quick-

BASIC computer program. Each figure represents an example for each of the Level

IV (for equal sample sizes) and Level V (for unequal sample sizes) menu options.

These files invoke the Mathematica computational files displayed in Appendix D.

The user can provide a unique name to each file for input into Mathematica.

<<normeq
delta - 4
sigma - 10
k- 5
t= 2
pru .95
<<nest
R[t ,k,pr]//N

Figure E.1 Example of a QuickBASIC Output File For the Specific Case of Nor-
mally Distributed Populations With Equal Sample Size and Solving for
n; Given k =5, t =2, PCS=.95, 6 =4, o, =10 and the search values for
n determined by a Mathematica file, 'nest'.
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<<norseq
delta- 4
signa- 10
k- 5
t- 2
n- 15
Q[n,tkJ//N

Figure E.2 Example of a QuickBASIC Output File For the Specific Case of Nor-
mally Distributed Populations With Equal Sample Size and Solving for
the PCS; Given k =5, t =2, n =15, 6 =4, and a =10.

<<normeqd
sigma- 10
n- 15
k= 5
tM 2
pr= .95
<<dest
R[t ,k,pr]//N

Figure E.3 Example of a QuickBASIC Output File For the Specific Case of Nor-
mally Distributed Populations With Equal Sample Size and Solving
for 6; Given k =5, t =2, PCS=.95, n = 15, a =10 and search values
determined by a Mathematica file, 'dest'.

<<normeqs
delta- 4
n= 15
k= 5
tfi 2

pr- .95
<<sest
R[t ,k,pr)//N

Figure E.4 Example of a QuickBASIC Output File For the Specific Case of Nor-
mally Distributed Populations With Equal Sample Size and Solving
for a; Given k =5, t =2, PCS=.95, n = 15, 6 =4 and search values
determined by a Mathematica file, 'sest'.
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<<norxueq
delta= 4
sip&a 10
k= 6

areTable (x. {k}]
n=Table [x, {k]]

niL 2 1] = is

na[ 3 33 = is
n[[ 4 33 = 14
nEE 6 3] = 14

Q[k]//N

nil 1 3] = [ s
nCC 2 1] = 15
nE[ 3 3] = is
n[[ 4 3] = 14
n[J J ]3 = 14

a[[ 2 ]]=JIOO
nll1J3 = 15
nEE 2 J3 = 15
nCC 3 3= = 14
nEE 4 ]3 = 14
nC[ 6 33 = 15
Q [k3 I/I
a[C 3 J3=N[%M
nCC 1 33 = 15
nEE 2 33 = 14
nCC 3 33 = is
nC[ 4 33 = 14
nu[ 6 33 = 16
Q [k] .//I
mEE 4 J3=NE1M
nCC 1 33 = 14
nE 2 33 15
n[[ 3 33 = 15
nCC 4 33 = 14
nC r6 33 = 15
Q 1k3 //I

Min[jA

Figure E.5 Example of a QuickBASIC Output File For the Specific Case of Nor-
mally Distributed Populations With Unequal Sample Sizes and Solving
for the PCS; Given k =5, t =1, 6 =4, a =10, and sample sizes of 15,
15, 15, 14, and 14.
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<<uoruueqd
Q[k]= .95
sigma= 10
k= 5
s=Table Ix.{k}J
u=TableE[x,{k}
nC[ 1 31 = 15
n[C 2 JJ = is
nIE 3 33 = 15
nCC 4 J] = 14
nCC 6 ]] = 14
DE 5 , .96 , 5 , 20 oI//
n[[ 1 ]]=I s

i[ 1J]] = 15

n[C2[ ] 15
nCC 3 ]] = 15
n[[ 4 JJ = 14
nCC 5 J = 14
D[ 5 , .95 , 5 , 20 ]//1
&[[ 2 ]]=N[X]
nC 1 ] : 15
an[ 2 ]3 15
nE[ 3 JJ = 14
n[E 4 3] = 14
nC[ 6 ]] = 15
DC 5 , .95 , 5 , 20 YIIN
DEE 3 ]J=]EJ
nE[ 1 J : 16
n[E 2 ]] = 14
nCC 3 ]1 15
nC[E 4 ] = 14
nEC[ s ] = 15
DC 5 , .96 , 6 , 20 3I//
aCC 4 ]]=NELJ
n[[E1 JJ = 14
niE 2 ]] = 1i
n[[ 3 ]] = 15
nCC 4 ]] = 14
nCC 5 ] 15
DC 5 , .96 , 5 , 20 ]//laEC 5 JJ=EL"/%J

Minim)

Figure E.6 Example of a QuickBASIC Output File For the Specific Case of Nor-
mally Distributed Populations With Unequal Sample Sizes and Solving
for b; Given k =5, t =1, PCS of .95, a =10, and sample sizes of 15, 15,

15, 14, and 14.
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Appendix F. Indifference-Zone Integral Ezpression For Normally

Distributed Populations With Unequal Sample Sizes For the Case of

k =2 and t =1, Written in MATHCAD

The following is the MATHCAD formula used to compute the values for Table

4.3. It shows a specific example using n(1 ) =57, n(2) =60, and b/o =.4. MATHCAD

has a 15 digit accuracy.

al :57

o2 60

q(u,, n2)J :-'- .-ru(cworm(x) - u,x) z+ A.4.i) du

q(nl, n2) = 0.984716550M93042
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Appendix G. PCS vs. A Graphs for Normally Distributed Populations

With Unequal Sample Sizes For the Case of k =2 and t = 1.

The following are graphs of Equation (4.9) and (4.10) at varying e5/e ratios;

M9

0.6

0 0.2 0OA 06 OA I

Figure G.1 PCS vs. A resulting from Equation (4.10) For Variois N When b/lr =.6.

0.9

Figure G.2 PCS vs. A• resulting from Equation (4.11) For Various N When 6/ur =.6.
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Figure G.3 PCS vs. A resulting from Equation (4.10) For Various N When 6/a' =.2.
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Appendix H. Data Tables

Table H.1 PCS Values as a Result of Losing One Observation From Each of Two
Samples and Varying Sample Size Assignments for Unequal Sample Size
Populations in the Case of k =4, t =2. Note: 6/or =.4 For All Cases.

n(1) n(2) n(1) n(4) PC0
14 14 15 15 0.637850
14 15 14 15 0.637874
14 15 15 14 0.637874
15 14 14 15 0.637874
15 14 15 14 0677

15 15 14 14 0.637841

Table H.2 PCS Values as a Result of Losing One Observation From Each of Two
Samples and Varying Sample Size Assignments for Unequal Sample Size
Populations in the Case of k =6, t =3. Note: 6/ur =.4 For All Cases.

n(1) n(2) n(3) n(4) n(5) n(6) PCS
14 14 15 15 15 15 0.449046
14 15 14 15 15 15 0.449046
15 14 14 15 15 15 0.449046
15 15 15 14 14 15 0.449046
15 15 15 14 15 14 0.449046
15 15 15 14 154 14 0.449046
14 15 15 14 15 15 0.449054
14 15 15 15 14 15 0.449054
14 15 15 15 15 14 0.449054
15 14 15 14 15 15 0.449054
15 14 15 15 14 15 0.449054
15 14 15 15 15 14 0.449054
15 15 14 14 15 15 0.449054
15 15 14 15 14 15 0.449054
15 15 14 15 15 14 0.449054
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Table H.3 PCS Values as a Result of Varying Sample Size Assignments for Unequal
Sample Size Populations in the Case of k =4, t =2. Note: .5fa =.4 For
All Cases.

np) n(2) In( 3 ) n(4 PCS
15 15 15 15 0.646328
14 15 15 15 0.642070
15 14 15 15 0.642070
15 15 14 15 0.642070
15 15 15 14 0.642070
13 15 15 15 0.637399
15 13 15 15 0.637399
15 15 13 15 0.637399
15 15 15 13 0.637399

Table H.4 PCS Values as a Result of Varying Sample Size Assignments for Unequal
Sample Size Populations in the Case of k =4, t =3. Note: /oa =.4 For
All Cases.

n(1 ) n( 2 ) n( 3 ) n( 4 ) PCS
15 15 15 15 0.715280
15 14 15 15 0.711844
15 15 14 15 0.711844
15 15 15 14 0.711844
14 15 15 15 0.710928
15 14 14 15 0.708432
15 14 15 14 0.708432
15 15 14 14 0.708432
14 1.4 15 15 0.707575
14 15 14 15 0.707575
14 15 15 14 0.707575
15 13 15 15 0.707983
15 15 13 15 0.707983
15 15 15 13 0.707983
13 15 15 15 0.706216
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Table H.5 PCS Values as a Result of Varying Sample Size Assignments for Unequal
Sample Size Populations in the Case of k =5, t =1. Note: 6/o =.4 For
All Cases.

n(j) n(2) n(3) n(4) n(5) PCs
15 15 15 15 15 0.667542
14 15 15 15 15 0.664453
15 14 15 15 15 0.664453
15 15 14 15 15 0.664453
15 15 15 14 15 0.664453
15 15 15 15 14 0.663790
14 14 15 15 15 0.661385
14 15 14 15 15 0.661385
14 15 15 14 15 0.661385
15 14 14 15 15 0.661385
15 14 15 14 15 0.661385
15 15 14 14 15 0.661385
14 15 15 15 14 0.660776
15 14 15 15 14 0.660776
15 15 14 15 14 0.660776
15 15 15 14 14 0.660776
13 15 15 15 15 0.660967
15 13 15 15 15 0.660967
15 15 13 15 15 0.660967
15 15 15 13 15 0.660967
15 15 15 15 13 0.659756
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Table H.6 PCS Values as a Result of Varying Sample Size Assignments for Unequal
Sample Size Populations in the Case of k =5, t =3. Note: 6 /a =.4 For
All Cases.

nil) n(2) n(3) n(4) n(s) PCS

15 15 15 15 15 0.557595
14 15 15 15 15 0.553634
15 14 15 15 15 0.553634
15 15 14 15 15 0.553877
15 15 15 14 15 0.553877
15 15 15 15 14 0.553877
15 15 14 14 15 0.550191
15 15 14 15 14 0.550191
15 15 15 14 14 0.550191
14 15 14 15 15 0.549966
14 15 15 14 15 0.549966
14 15 15 15 14 0.549966
15 14 14 15 15 0.549966
15 14 15 14 15 0.549966
15 14 15 15 14 0.549966
14 14 15 15 15 0.549713
15 15 13 15 15 0.549786
15 15 15 13 15 0.549786
15 15 15 15 13 0.549786
13 15 15 15 15 **
13 15 15 15 15 **

** Computer software could not provide a
numerical answer for an unknown reason.
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Table H.7 PCS Values as a Result of Varying Sample Size Assignments for Unequal
Sample Size Populations in the Case of k =5, t =4. Note: 5/o =.4 For
All Cases.

n(j) n(2) n(3) n(4) n(5) P CS
15 15 15 15 15 0.667542
14 15 15 15 15 0.663790
15 14 15 15 15 0.664453
15 15 14 15 15 0.664453
15 15 15 14 15 0.664453
15 15 15 15 14 0.664453
15 14 14 15 15 0.661385
15 14 15 14 15 0.661385
15 14 15 15 14 0.631385
15 15 14 14 15 0.631385
15 15 14 15 14 0.631385
15 15 15 14 14 0.631385
14 14 15 15 15 0.660776
14 15 14 15 15 0.660776
14 15 15 14 15 0.660776
14 15 15 15 14 0.660776
15 13 15 15 15 0.660967
15 15 13 15 15 0.660967
15 15 15 13 15 0.660967
15 15 15 15 13 0.660967
13 15 15 15 15 0.659756
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